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Testing principles1

Principles provide a general guideline.

1Materials from Graham, van Veenendall, Evans, and Black, Fundamentals
of Software Testing: ISTQB Certification, Thomson, 2007.
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Testing shows presence of defect
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Exhaustive testing is impossible



Outline Testing principles Unit testing

Early testing
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Example: The Triangle Test2

Given the lengths of three sides of a triangle, determine the
type of that triangle.

Equilateral
Isosceles
Scalene

2Taken from Black, Pragmatic Software Testing, Wiley, 2007
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The code that can be tested

Consider this code:

package lect02;

public class Triangle1 {

static void checkType(int a, int b, int c) {
if((a==b) && (b==c))

System.out.println("Equilateral");

else if((a==b) ||(b==c) ||(a==c))
System.out.println("Isosceles");

else
System.out.println("Scalene");

}

public static void main(String [] argv) {
int a,b,c;

// .... read input
checkType(a,b,c);

}
}

How can we test this
program, in particular
method checkType?

Automatically? Very
very difficult.
Because?

It is hard to check the
output of the method.
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After some fix

package lect02;

public class Triangle {

enum Type { Equilateral, Isosceles, Scalene }

static Type checkType(int a, int b, int c) {
if((a==b) && (b==c))

return Type.Equilateral;
else if((a==b) ||(b==c) ||(a==c))
return Type.Isosceles;

else
return Type.Scalene;

}
}
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Practice

Find as many interesting test cases for this method.
Write in this form:

Tester action and data Expected result

We will use this example to talk about good test set again.
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Unit testing: classic example3

John: John works hard. He codes everyday. The project deadline is tomorrow.

He types in about two hundred new lines per hour, and thinks that after 6 hours

and roughly a thousand new lines added the program would work flawlessly.

Betty: Betty works hard. She codes everyday. The project deadline is

tomorrow. She types in about one hundred new lines per hour, and keeps

testing each method she adds. She does not proceed to write new codes unless

all previously written pieces work correctly.

Guess who will go to bed earlier?

3Materials regarding unit testing concepts are from Alberto Savoia’s slides
and George Necular’s software engineering course
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Developer Testing Revolution

Developer testing is a key component in a hot paradigm:
Agile/eXtreme Programming.

The Developer Testing Trinity:

Test
Test early and often
Test well
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Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Good reasons for developer testing

Reduces unit-level bugs

Forces you to slow down and think

Improves design

Makes development faster

Tests are good documentation

Tests constrain features

Tests allows safe refactoring and reduce the cost of change

Tests defend against other programmers

Tests reduce fear



Outline Testing principles Unit testing

Goals

Does the code do what I want?

Does the code do what I want all the time?

Can I depend on it?

Also: get a document for the code.
Plus: Always correct documentation for your intention.
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Test your code

It is your code, and your responsibility

Do it for your current colleagues

Do it for future generation of colleagues

Do it for yourself
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Test early and often
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Heaven!

Every class has unit tests

The tests are executed many times each day

The tests are thorough, up to date, and easy to maintain and
analyze

In this class, we shall aim for that.
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A unit

What’s a unit?

A single method/function/procedure
A collection of related methods/functions/procedues

Ideal world: independent, self-sufficient, standalone

Real world: lots of dependence
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Basic structure

Setup

Create initial states
Initialize method parameters
Store pre-execute values

Execute code

Compare results
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Practice: Triangle

Write junit test cases for Triangle.
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Discussion: test cases for Triangle

What are your test cases?
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Test-driven development

Traditional steps:
design, code, test, design, code, test, ...

TDD:
test, code, refactor, test, code, refactor, ...

We’ll discuss more about TDD later. For now, let’s do it a
little.
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TDD: Triangle

See demo.
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Practice: Median
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