

Unit testing in JavaScript
with Mocha and Chai

01219245/01219246
Individual Software Process

Common structure of a test case

● How do you test a function?
– You need to call it,

– and check if it works correctly,

– by looking at its return value.

● Your code would contain:

some initialization code

Call the function

check the results

The checking
code is usually
written as a set
of assertions.

Our test code in Flappy Dot

assert(checkPlayerPillarCollision(100, 100, 300, 200), false,
 'when the dot is very far left of the pillar pair');
assert(checkPlayerPillarCollision(300, 300, 300, 200), true,
 'when the dot hit the middle of the top pillar');

var result = checkPlayerPillarCollision(100, 100, 300, 200);

assert(result, false,
 'when the dot is very far left of the pillar pair');

The checking code is usually written as a set of
assertions.

Testing Tools

● Test framework: Mocha
– Calls our test methods and shows results

● Assertion library: Chai
– Help us express our expected result

● Additional library:
– jQuery

● Download template at:
– http://theory.cpe.ku.ac.th/wiki/images/219245-practice.zip

The first (finished) example
function max3(a, b, c) {
 if((a >= b) && (a >= c))
 return a;
 if((b >= a) && (b >= c))
 return b;
 if((c >= a) && (c >= b))
 return c;
}

describe('max3', function() {
 it('should return the maximum when the 1st argument is strictly maximum', function() {
 assert(max3(10, 5, 2) == 10);
 });
 it('should return the maximum when the 2nd argument is strictly maximum', function() {
 assert(max3(2, 15, 5) == 15);
 });
 it('should return the maximum when the 3rd argument is strictly maximum', function() {
 assert(max3(5, 2, 9) == 9);
 });
 it('should return the maximum when 1st and 2nd args are maximum', function() {
 assert(max3(7, 7, 3) == 7);
 });
 it('should return the maximum when 2nd and 3rd args are maximum', function() {
 assert(max3(5, 12, 12) == 12);
 });
});

*spaces between lines are removed so that the code fit in one page.

What do you see?

● A code with corresponding test cases.
● Enough test cases to make you feel confident

about the correctness of the code.
– Ask yourself: hide the code and look at only the

test, does it make you feel comfortable to use the
code?

● Enough test examples to explain what the
function does.

How can we get there?

● Traditional approach
– Write code, then write test.

● Test-driven development
– Write test, then write code.

A few words before we start

● TDD is a well-established practice in software
development in general.

● But in Game development, TDD (or even unit
testing) is not a standard practice.

1st example: max3

● Let's try to work with max3 to get to the final
code as shown previously.

● This function returns the maximum of a, b, and
c.

function max3(a, b, c) {
}

How to get started

● If you are fluent with the techniques, you can
just start writing test cases right away.

● But sometimes it might be easier to start by
thinking about what you would like to test.

● In other words, let ask:
– how do we know that max3 works correctly?

What's in this box?

Is it a star-shaped object?

Let's try to “peak” into the box
with a pin

Is it a star-shaped object?

x x

x
x xx

x

These are
the positions
that we plan
to use a pin
to check if
there is
anything at
that position

Expectations:
if there is a star in the box

Is it a star-shaped object?

o o

x
o ox

x

o = nothing
x = something

Actual results

Do you believe that it is a star-shaped object?

o o

x
o ox

x

o = nothing
x = something

Actual results with more tests

Do you believe that it is a star-shaped object?

o o

x
o ox

x

o = nothing
x = something

o

o
o

o
x

x

x
x

xx

x
o

o

o

o

o

o

Usage examples

● Think about the test cases as usage examples
for the function.

a b c
expected

results

Try to be lazy

● Many usage examples look at the same
situation.

● We don't need to include all of them.

a b c
expected

results
10
50
13
1
9

10

20
700
15
2
30
10

5
12
12
3

40
5

20
700
15
3

40
10

Pick one to start

● We need to get started.
● Pick one example, and let's code.

– Which one? Let's try the one that is easiest to
code.

a b c
expected

results
10

1

10

20

2

10

5

3

5

20

3

10

See the demo

Test structure

Assertions

Let's try

● Let's start with a simple function:

● This function adds a and b, but ensure that the
return value is not greater than cap. (Think
about the HP in game after you drink a magic
recovery portion.)

function addWithCap(a, b, cap) {
}

Examples

● Before you start writing the test and code, think about the
examples that you would need to show that addWithCap
 works correctly.

● Think about a table like the one below.
● After you have listed a few test cases, think about which

one to start testing first.

a b cap
expected

results

Practice time

Function pronounce

● Write function pronounce that takes an integer
x from 1 to 999 and return how x is pronounced
in English.

● For example:
– pronounce(1) should return 'one'

– pronounce(57) should return 'fifty-seven'

function pronounce(x) {
}

Function getTopK

● Write function getTopK that takes an array of
integers and returns the k-th largest integer.

● For example:
– getTopK([1, 2, 3, 4], 3) should return 2

– getTopK([10, 9, 8, 100], 2) should
return 10

function getTopK(arr, k) {
}

Testing object behavior

● We want to have a Player:
– a Player has property healthPoint
– valid value of healthPoint is from 0 to 100

● Player has the following methods
– setHealthPoint(point)
– takeHit(attackPoint)

● decrease the healthPoint by attackPoint but healthPoint should never be
less than 0

– recoverHealth(recoveryPoint)
● increase the healthPoint by recoveryPoint but healthPoint should never be

more than 100

– isDead() and isAlive() which return true/false

See demo

Current code
function Player() {
 this.healthPoint = Player.MAX_HEALTHPOINT;
}
Player.MAX_HEALTHPOINT = 100;
Player.MIN_HEALTHPOINT = 0;

Player.prototype.setHealthPoint = function(point) {
 this.healthPoint = point;
};

describe('Player', function() {

 it('should have healthPoint', function() {
 var p = new Player();
 assert(p.healthPoint != undefined);
 });

 it('should be able to set health point', function() {
 var p = new Player();
 p.setHealthPoint(67);
 assert(p.healthPoint == 67);
 });
});

var and beforeEach

describe('Player', function() {

 beforeEach(function() {
 this.player = new Player();
 });

 it('should have healthPoint', function() {
 assert(this.player.healthPoint != undefined);
 });

 it('should be able to set health point', function() {
 this.player.setHealthPoint(67);
 assert(this.player.healthPoint == 67);
 });
});

Note that we change the variable name from p to
player because now the scope of this variable
gets larger so that we need a more meaningful
name.

OXBoard

● An OXBoard represent a 3x3 O-X board.
● It has the following methods

– placeO(row, column)

– placeX(row, column)

– show()
● returns,e.g., an array of string ['XX.','OXO', 'OO.'].

– hasEnded()

– getWinner()
● returns 'X' or 'O' or null if the game has not ended or the game ends in draw.

– isDraw()

– hasOWon()

– hasXWon()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

