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Common structure of a test case

● How do you test a function?
– You need to call it,

– and check if it works correctly, 

– by looking at its return value.

● Your code would contain:

some initialization code

Call the function

check the results

The checking 
code is usually 
written as a set 
of assertions.



  

Our test code in Flappy Dot

assert( checkPlayerPillarCollision( 100, 100, 300, 200 ), false,
        'when the dot is very far left of the pillar pair' );
assert( checkPlayerPillarCollision( 300, 300, 300, 200 ), true,
        'when the dot hit the middle of the top pillar' );

var result = checkPlayerPillarCollision( 100, 100, 300, 200 );

assert( result, false,
         'when the dot is very far left of the pillar pair' );

The checking code is usually written as a set of 
assertions.



  

Testing Tools

● Test framework: Mocha
– Calls our test methods and shows results

● Assertion library: Chai
– Help us express our expected result

● Additional library: 
– jQuery

● Download template at:
– http://theory.cpe.ku.ac.th/wiki/images/219245-practice.zip



  

The first (finished) example
function max3( a, b, c ) {
    if( ( a >= b ) && ( a >= c ) )
        return a;
    if( ( b >= a ) && ( b >= c ) )
        return b;
    if( ( c >= a ) && ( c >= b ) )
        return c;
}

describe( 'max3', function() {    
    it( 'should return the maximum when the 1st argument is strictly maximum', function() {
        assert( max3( 10, 5, 2 ) == 10 );
    });
    it( 'should return the maximum when the 2nd argument is strictly maximum', function() {
        assert( max3( 2, 15, 5 ) == 15 );
    });
    it( 'should return the maximum when the 3rd argument is strictly maximum', function() {
        assert( max3( 5, 2, 9 ) == 9 );
    });
    it( 'should return the maximum when 1st and 2nd args are maximum', function() {
        assert( max3( 7, 7, 3 ) == 7 );
    });
    it( 'should return the maximum when 2nd and 3rd args are maximum', function() {
        assert( max3( 5, 12, 12 ) == 12 );
    });
});

*spaces between lines are removed so that the code fit in one page.



  

What do you see?

● A code with corresponding test cases.
● Enough test cases to make you feel confident 

about the correctness of the code.
– Ask yourself: hide the code and look at only the 

test, does it make you feel comfortable to use the 
code?

● Enough test examples to explain what the 
function does.



  

How can we get there?

● Traditional approach
– Write code, then write test.

● Test-driven development
– Write test, then write code.



  

A few words before we start

● TDD is a well-established practice in software 
development in general.

● But in Game development, TDD (or even unit 
testing) is not a standard practice.



  

1st example: max3

● Let's try to work with max3 to get to the final 
code as shown previously.

● This function returns the maximum of a, b, and 
c.

function max3( a, b, c ) {
}



  

How to get started

● If you are fluent with the techniques, you can 
just start writing test cases right away.

● But sometimes it might be easier to start by 
thinking about what you would like to test.

● In other words, let ask:
– how do we know that max3 works correctly?



  

What's in this box?

Is it a star-shaped object?



  

Let's try to “peak” into the box 
with a  pin

Is it a star-shaped object?

x x

x
x xx

x

These are 
the positions 
that we plan 
to use a pin 
to check if 
there is 
anything at 
that position



  

Expectations:
if there is a star in the box

Is it a star-shaped object?

o o

x
o ox

x

o = nothing
x = something



  

Actual results

Do you believe that it is a star-shaped object?

o o

x
o ox

x

o = nothing
x = something



  

Actual results with more tests

Do you believe that it is a star-shaped object?
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Usage examples

● Think about the test cases as usage examples 
for the function.

a b c
expected 

results



  

Try to be lazy

● Many usage examples look at the same 
situation.

● We don't need to include all of them.

a b c
expected 

results
10
50
13
1
9

10

20
700
15
2
30
10

5
12
12
3

40
5

20
700
15
3

40
10



  

Pick one to start

● We need to get started.
● Pick one example, and let's code.

– Which one?  Let's try the one that is easiest to 
code.

a b c
expected 

results
10

1

10

20

2

10

5

3

5

20

3

10



  

See the demo



  

Test structure



  

Assertions



  

Let's try

● Let's start with a simple function:

● This function adds a and b, but ensure that the 
return value is not greater than cap.  (Think 
about the HP in game after you drink a magic 
recovery portion.)

function addWithCap( a, b, cap ) {
}



  

Examples

● Before you start writing the test and code, think about the 
examples that you would need to show that  addWithCap 
 works correctly.

● Think about a table like the one below.
● After you have listed a few test cases, think about which 

one to start testing first.

a b cap
expected 

results



  

Practice time



  

Function pronounce

● Write function pronounce that takes an integer 
x from 1 to 999 and return how x is pronounced 
in English.

● For example: 
– pronounce( 1 ) should return 'one'

– pronounce( 57 ) should return 'fifty-seven'

function pronounce( x ) {
}



  

Function getTopK

● Write function getTopK that takes an array of 
integers and returns the k-th largest integer.

● For example:
– getTopK( [ 1, 2, 3, 4 ], 3 ) should return 2

– getTopK( [ 10, 9, 8, 100 ], 2 ) should 
return 10

function getTopK( arr, k ) {
}



  

Testing object behavior

● We want to have a Player:
– a Player has property healthPoint
– valid value of healthPoint is from 0 to 100

● Player has the following methods
– setHealthPoint( point)
– takeHit( attackPoint )

● decrease the healthPoint by attackPoint but healthPoint should never be 
less than 0

– recoverHealth( recoveryPoint )
● increase the healthPoint by recoveryPoint but healthPoint should never be 

more than 100

– isDead() and isAlive()  which return true/false



  

See demo



  

Current code
function Player() {
    this.healthPoint = Player.MAX_HEALTHPOINT;
}
Player.MAX_HEALTHPOINT = 100;
Player.MIN_HEALTHPOINT = 0;

Player.prototype.setHealthPoint = function( point ) {
    this.healthPoint = point;
};

describe( 'Player', function() {

    it( 'should have healthPoint', function() {
        var p = new Player();
        assert( p.healthPoint != undefined );
    });

    it( 'should be able to set health point', function() {
        var p = new Player();
        p.setHealthPoint( 67 );
        assert( p.healthPoint == 67 );
    });
});



  

var and beforeEach

describe( 'Player', function() {

    beforeEach( function() {
        this.player = new Player();
    });

    it( 'should have healthPoint', function() {
        assert( this.player.healthPoint != undefined );
    });

    it( 'should be able to set health point', function() {
        this.player.setHealthPoint( 67 );
        assert( this.player.healthPoint == 67 );
    });
});

Note that we change the variable name from p to 
player because now the scope of this variable 
gets larger so that we need a more meaningful 
name.



  

OXBoard

● An OXBoard represent a 3x3 O-X board.
● It has the following methods

– placeO( row, column )

– placeX( row, column )

– show()
● returns,e.g., an array of string ['XX.','OXO', 'OO.'].

– hasEnded()

– getWinner()
● returns 'X' or 'O' or null if the game has not ended or the game ends in draw.

– isDraw()

– hasOWon()

– hasXWon()
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