Web Programming with Python (Django)

Sutee Sudprasert

apNXN1INHUNED Django 1.0 Web Site Development - Ayman Hourieh

Monday, August 29, 11

MVC pattern in web development

e Old and clumsy ways for web development

e Common Gateway Interface

¢ be difficult to work with

® require a separate copy of the program to be launched for each request

e Script languages such as Perl and PHP

¢ |acked unified frameworks

Monday, August 29, 11

MVC pattern in web development

* The better way

e model-view-controller (MVC) pattern for web development

e Model: data Request
[View [¢— I
e User interface: view
—i Controller]
e Data-handling logic: controller [Model \‘*

Monday, August 29, 11

Why Python??

¢ A clean and elegant syntax
e A large standard library of modules that covers a wide range of tasks
e Extensive documentation

e A mature runtime environment

e Support for standard and proven technologies such as Linux and Apache

Monday, August 29, 11

Why Django?

* Python web application frameworks

e Turbogears

e Grok

e Pyjamas

e and mores

e http://en.wikipedia.org/wiki/Comparison of Web application frameworks#Python

Monday, August 29, 11

http://en.wikipedia.org/wiki/Comparison_of_Web_application_frameworks#
http://en.wikipedia.org/wiki/Comparison_of_Web_application_frameworks#

Why Django?

e Tight integration between components

e Object-Relation Mapper

e Clean URL design

e Automatic administration interface

e Advanced development environment

e Multilingual support

Monday, August 29, 11

History of Django

The Web framework for perfectionists with deadlines

DJANGO REINHARDT

Vol.4

DU HOT <LUB
DE FRANCE

Stingin'’

Monday, August 29, 11

Installing Django

e https://www.djangoproject.com/download/

e extract and run: python setup.py install

e For Windows:

e copy the django-admin.py file from Django-x.xx/django/bin to
somewhere in your system path such as c: \windows

e You can test your installation by running this command:

e django—-admin.py —--version

Monday, August 29, 11

https://www.djangoproject.com/download/
https://www.djangoproject.com/download/

Setting up the database

e Edit settings.py file

DATABASE ENGINE = 'django.db.backends.sqglite3'
DATABASE NAME = 'bookmarks.db'

DATABASE USER = '

DATABASE PASSWORD = '’

DATABASE HOST = ''

DATABASE PORT = '’

e Run python manage.py syncdb

e Enter username, email, and password for the superuser account

Monday, August 29, 11

Launching the development server

e Run python manage.py runserver

e open your browser, and navigate to http://localhost:8000/

® you can specify port in the command line

e python manage.py runserver <port number>

10

Monday, August 29, 11

http://localhost:8000
http://localhost:8000

Building a Social

Sookmarking Application

11

Topics

e URLs and views: Creating the main page
* Models: Designing an initial database schema
e Templates: Creating a template for the main page

e Putting it all together: Generating user pages

12

Monday, August 29, 11

MTV framework

e In Django

e model = model

e template = view

e view = controller

13

Monday, August 29, 11

Creating the main page view

e create a Django application inside our project

e python manage.py startapp bookmarks

e it will create a folder named bookmarks with these files
e 1nlit .py

* V1EWS.pY

e models.py

14

Monday, August 29, 11

Creating the main page view

e Open the file bookmarks/views.py and enter the following:

from django.http import HttpResponse
def main page (request) :

output = u'''
<html>
<head><title>%s</title></head>
<body>
<h1l>%s</hl><p>%s</p>
</body>
</html>

lll%(
u'Django Bookmarks',

u'Welcome to Django Bookmarks',
u'Where you can store and share bookmarks!'

)
return HttpResponse (output)

15

Monday, August 29, 11

Creating the main page URL

e Open file urls.py and add an entry for the main page

from django.conf.urls.defaults import *
from bookmarks.views import *

urlpatterns = patterns(‘’,
r ‘*5’, maln page),

)

16

Monday, August 29, 11

Models: designing an initial datalbase schema

e Django abstracts access to database table through Python classes

e For our bookmarking application, we need to store three types of data in the
database:

e Users (ID, username, password, email)

e Links (ID, URL)

e Bookmarks (ID, title, user_id, link_id)

17

Monday, August 29, 11

The link data model

e Open the bookmarks/models.py file and type the following code:

from django.db 1mport models

class Link (models.Model) :
url = models.URLField (unique=True)

18

Monday, August 29, 11

A partial table of the field types

Field type Description

IntegerField An integer

TextField A large text field

DateTimeField A date and time field

EmailField An email field with 75 characters max.
URLField A URL field with 200 characters max.
FileField A file-upload field

http://docs.djangoproject.com/en/dev/ref/models/fields/

19

Monday, August 29, 11

http://docs.djangoproject.com/en/dev/ref/models/fields/
http://docs.djangoproject.com/en/dev/ref/models/fields/

The link data model

e N5N9x3N 1% model 284 application Nyt lUlvd 9Ty activate 62
application nau laansuinn lulwa settings.py

INSTALLED APPS = (
'django.contrib.auth’',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
'django.contrib.messages',
'django.contrib.staticfiles',
'django _bookmarks.bookmarks',

)
* PINUUIIA
python manage.py syncdb

* gN1909 SQL Ngnaselaann

python manage.py sgl bookmarks

Monday, August 29, 11

The link data model

¢ To explore the API, we will use the Python interactive console. To launch the
console, use the following command:

python manage.py shell

¢ Using the Link model:

>>2>
>2>2>
>>2>
>2>2>
>>2>
>2>2>
>>2>
>2>2>
>>2>
>2>2>
>>2>
>2>2>
>>2>

from bookmarks.models import *

1linkl = Link(url=u'http://www.packtpub.com/")
linkl.save ()

1ink?2 = Link(url=u'http://www.example.com/")
link2.save ()

link2.url

Link.objects.all ()
Link.objects.get (1d=1)

link2.delete ()

Link.objects.count () o

Monday, August 29, 11

http://www.packtpub.com/'
http://www.packtpub.com/'
http://www.packtpub.com/'
http://www.packtpub.com/'

The link data model

e Django provides the convenient approach to manage the model

e You don't have to learn another language to access the database.

e Django transparently handles the conversion between Python objects and
table rows.

e You don't have to worry about any special SQL syntax for different
database engines.

22

Monday, August 29, 11

The user data model

e Fortunately for us, management of user accounts is so common that Django
comes with a user model ready for us to use.

>>> from django.contrib.auth.models import User
>>> User.objects.all ()

>>> user = User.objects.get (1)

>>>

>>> dir (user)

e \\e can directly use the User model without any extra code.

23

Monday, August 29, 11

The bookmark data model

e The Bookmark model has a many-to-many relationship between users and
links

¢ these is the one-to-many relationship between the user and their
bookmarks

e these is the one-to-many relationship between a link and its bookmarks

from django.contrib.auth.models import User

class Bookmark (models.Model) :
title = models.CharField(max length=200)
user = models.ForeignKey (User)
link = models.ForeignKey (Link)

24

Monday, August 29, 11

Templates: creating a template for the main page

e \We embed the HTML code of the page into the view's code. This approach
has many disadvantages even for a basic view:

e Good software engineering practices always emphasize the separation
between Ul and logic

e Editing HTML embedded within Python requires Python knowledge

e Handling HTML code within the Python code is a tedious and error-prone
task

e Therefore, we'd better separate Django views from HTML code generation

25

Monday, August 29, 11

Templates: creating a template for the main page

e This template may contain placeholders for dynamic sections that are
generated in the view.

¢ the view loads the template and passes dynamic values to it

¢ the template replaces the placeholders with these values and generates
the page

e First, we need to inform Django of our templates folder. Open settings.py

import os.path, sys

TEMPLATE DIRS = (
os.path.join(sys.path[0], 'templates'),
)

26

Monday, August 29, 11

Templates: creating a template for the main page

® Next, create a file called main_page.html in the templates folder with the
following content:

<html>
<head>
<title>{{ head title }}</title>
</head>
<body>
<hl>{{ page title }}</hl>
<p>{{ page_body }}</p>
</body>
</html>

27

Monday, August 29, 11

Templates: creating a template for the main page

e Edit the bookmarks/views.py file and replace its contents with the
following code:

from django.http import HttpResponse
from django.template import Context
from django.template.loader Import get template

def main page (request) :
template = get template('main page.html')
varlables = Context ({
'head title': u'Django Bookmarks',
'page title': u'Welcome to Django Bookmarks',
'page body': u'Where you can store and share bookmarks!'
})
output = template.render (variables)
return HttpResponse (output)

28

Monday, August 29, 11

Putting it all together: generating user pages

e Creating the URL

e The URL of this view will have the form user/username, where username
IS the owner of the bookmarks that we want to see.

e This URL is different from the first URL that we added because it contains
a dynamic portion.

urlpatterns = patterns('',
(r'~$', main page),
(r'*user/ (\w+)/$', user page),
)

29

Monday, August 29, 11

Putting it all together: generating user pages

e Open the bookmarks/views.py file and enter the following code:

from django.http 1mport HttpResponse, Http404
from django.contrib.auth.models import User

def user page (request, username):
try:
user = User.objects.get (username=username)
except User.DoesNotExist:
raise Http404 (u'Requested user not found.')

bookmarks = user.bookmark set.all ()
template = get template('user page.html')
varlables = Context ({

"username': username,

'"bookmarks': bookmarks
})
output = template.render (variables)

return HttpResponse (output)

30

Monday, August 29, 11

Putting it all together: generating user pages

e Create a file called user page.html in the templates directory

<html>
<head>
<title>Django Bookmarks - User: {{ username }}</title>
</head>
<body>
<hl>Bookmarks for {{ username }}</hl>
{$ 1f bookmarks %}

{%$ for bookmark in bookmarks %}

{{ bookmark.title }l
</1li>
{% endfor %}

{5 else %}
<p>No bookmarks found.</p>
{%$ endif %}
</body>
</html>

31

Monday, August 29, 11

Putting it all together: generating user pages

¢ Populating the model with data

>>> from django.contrib.auth.models i1mport User
>>> from bookmarks.models 1mport *

>>> user = User.objects.get (1d=1)

>>> 1link = Link.objects.get (1d=1)

>>> bookmark = Bookmark/(
title=u'Packt Publishing',
user=user,
link=11ink
)

>>> bookmark.save ()

>>> user.bookmark set.all()

32

Monday, August 29, 11

User

—Registration and Management

33

Monday, August 29, 11

Topics

e Session authentication

e Improving template structures

e User registration

e Account management

34

Monday, August 29, 11

Session authentication

e The Django authentication system is available in the django.contrib.auth
package that is installed by default.

INSTALLED APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
'django.contrib.messages',
'django.contrib.staticfiles',
'django bookmarks.bookmarks',

Monday, August 29, 11

Session authentication

e Features of the auth package

e Users: A comprehensive user data model with fields commonly required
by web applications

e Permissions: Yes/No flags that indicate whether a user may access a
certain feature or not

e Groups: A data model for grouping more than one user together and
applying the same set of permissions to them

e Messages: Provides the functionality for displaying information and error
messages to the user

36

Monday, August 29, 11

Creating the login page

e Those who have worked on programming a session management system in a
low-level web framework (such as PHP and its library) will know that this task
IS not straightforward.

e Fortunately, Django developers have carefully implemented a session
management system for us and activating it only requires exposing certain
views to the user.

37

Monday, August 29, 11

Creating the login page

e First of all, you need to add a new URL entry to the urls.py file.

urlpatterns = patterns('',
(r'”$', main page),
(r'”~user/ (\wt+) /$',user page),
(r'~login/$', 'django.contrib.auth.views.login'),

e The module django.contrib.auth.views contains a number of views

related to session management. We have only exposed the login view for
now.

38

Monday, August 29, 11

Creating the login page

e The login view requires the availability of a template called registration/
login.html in the templates directory.

® The login view passes passes an object that represents the login form to the
template.

e form.username generates HTML code for username

e form.password generates HTML code for password

e form.has errors Is setto true if logging in fails after submitting the
form

39

Monday, August 29, 11

Creating the login page

e Make a directory named registration within the templates directory,
and create a file called 1ogin.html init.

<html>
<head> <title>Django Bookmarks - User Login</title> </head>
<body>
<hl>User Login</hl>
{$ 1f form.errors %}
<p>Your username and password didn't match.
Please try again.</p>
{%$ endif %}
<form method="post" action="."> {% csrf token %}
<p> <label for="id username">Username:</label>
{{ form.username }} </p>
<p> <label for="id password">Password:</label>
{{ form.password }} </p>
<input type="hidden" name="next" wvalue="/" />
<input type="submit" walue="login" />
</form>
</body>
</html>

40

Monday, August 29, 11

Creating the login page

® |t is a good idea to make the main page indicate whether you are logged in or

not. Rewrite the templates/main page.html file:

<html>
<head>
<title>Django Bookmarks</title>
</head>
<body>
<hl>Welcome to Django Bookmarks</hl>
{%$ 1f user.username %}
<p>Welcome {{ user.username }}!
Here you can store and share bookmarks!</p>
{3 else %}
<p>Welcome anonymous user!
You need to login
before you can store and share bookmarks.</p>
{% endif %}
</body>
</html>

41

Monday, August 29, 11

Creating the login page

e Open bookmarks/views.py and change the view as follows:

from django.http import HttpResponse
from django.template import Context
from django.template.loader Import get template

def main page (request):
template = get template('main page.html')
variables = Context({'user': request.user})
output = template.render (variables)
return HttpResponse (output)

42

Monday, August 29, 11

Creating the login page

¢ You may have noticed by now that loading a template, passing variables to it,
and rendering the page is a very common task.

¢ Indeed, it is so common that Django provides a shortcut for it.

from django.shortcuts import render to response

def main page (request):
return render to response (
'main page.html',
{'"user': request.user}

e Using the render to response method from the django.shortcuts
package, we have reduced the view to one statement.

43

Monday, August 29, 11

Creating the login page

® The user object available at request.user is the same type of User object as
we have dealt with before.

e is authenticated () returns a Boolean value indicating whether the user is logged in
or not

e get full name () returns the first name and the last name of the user, with a space in
between

e ecmail user (subject, message, from email=None) sends an email to the user

e set password(raw password) sets the user password to the passed value

e check password(raw password) returns a Boolean value indicating whether the
passed password matches the user password
44

Monday, August 29, 11

Creating the login page

e "Why is there a set_password method when one can just as easily set the
password attribute of the user object?”

>>> from django.contrib.auth.models import User
>>> user = User.objects.get (1d=1)

>>> user.password
'shalS$Self02Sbc3c0ef7d3e5e405cbaac0ad44cb007¢c3d34c372c¢!

45

Monday, August 29, 11

—nabling logout functionality

e WWhen the user hits the URL 1ogout/, we will log the user out and redirect
him or her back to the main page.

e To do this, create a new view in the bookmarks/views.py file.

from django.http
import HttpResponseRedirect
from django.contrib.auth import logout

def logout page (request):
logout (request)
return HttpResponseRedirect ('/")

46

Monday, August 29, 11

—nabling logout functionality

e Now we need to add a URL entry for this view. Open urls.py and create an
entry as follows:

urlpatterns = patterns('',
(r'”$', main page),
(r'*user/ (\w+) /S$',user page),
(r'*login/$', 'django.contrib.auth.views.login'),
(r'~logout/$', logout page),

47

Monday, August 29, 11

Improving template structure

¢ \\le have created three templates so far. They all share the same general
structure, and only differ in the title and main content.

e The Django template system already provides such a feature-template
iInheritance.

e create base template

e declare certain blocks of the base template that can be modified by child
template

e create a child template that extends the base template and modifies its
blocks

48

Monday, August 29, 11

Improving template structure

e Apply this feature to our project by creating a file called base.html in the
templates directory with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html>
<head>
<title>
Django Bookmarks | {% block title %} {% endblock %}
</title>
</head>
<body>
<hl>{% block head %}{% endblock %}</hl>
{% block content %} {% endblock %}
</body>
</html>

49

Monday, August 29, 11

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

Improving template structure

e The block tag is used to define sections that are modifiable by child
templates.

e To modify these blocks using a child template, edit the templates/
main page.html file and replace its content with the following:

{% extends "base.html" %}
{% block title %}Welcome to Django Bookmarks{% endblock %}
{% block head $}Welcome to Django Bookmarks{% endblock %}
{% block content %}
{% 1f user.username %}
<p>Welcome {{ user.username }}!
Here you can store and share bookmarks!</p>
{% else %}
<p>Welcome anonymous user!
You need to login
before you can store and share bookmarks.</p>
{%$ endif %}
{% endblock %}

50

Monday, August 29, 11

Improving template structure

e Next, let's restructure the templates/user_page.html file to make use of the
new base template:

{%$ extends "base.html" %}
{%$ block title %} {{ username }}{% endblock %}
{% block head %}Bookmarks for {{ username }}{% endblock %}
{% block content %}
{%$ 1f bookmarks %}

{%$ for bookmark in bookmarks %}

{{ bookmark.title }}
</1li>
{% endfor %}

{% else %}
<p>No bookmarks found.</p>
{% endif %}
{% endblock %}

51

Monday, August 29, 11

Improving template structure

e Finally, let's see how to convert the templates/registration/login.html file:

{% extends "base.html" %}
{% block title %}User Login{% endblock %}
{% block head %}User Login{% endblock %}
{% block content %}
{%$ 1f form.errors %}
<p>Your username and password didn't match.
Please try again.</p>
{%$ endif %}
<form method="post" action="."> {% csrf token %}
<p><label for="id username">Username:</label>
{{ form.username }}</p>
<p><label for="id password">Password:</label>
{{ form.password }}</p>
<input type="submit" wvalue="login" />
<input type="hidden" name="next" wvalue="/" />
</form>
{% endblock %}

52

Monday, August 29, 11

Adding a CSS stylesheet to the project

e Stylesheets and images are static files and Django does not serve them.

e we Will use a workaround to make it serve static content.

e Open urls.py and update it.

import os.path

site media = os.path.join(
os.path.dirname(file), 'site media’

)

urlpatterns = patterns('',

(r'”"site media/ (?P<path>.*)S3"',
'django.views.static.serve',
{'document root': site media}l),

)

53

Monday, August 29, 11

Linking the stylesheet to the template

e Edit the templates/base.html file

<head>
<title>
Django Bookmarks | {% block title %} {% endblock %}
</title>

<link rel="stylesheet" href="/site media/style.css"
type="text/css"/>
</head>

54

Monday, August 29, 11

Adding a navigation menu

e Edit the templates/base.html file

<body>
<div i1d="nav">
home |
{$ 1f user.1s authenticated %}
welcome {{ user.username }}
(logout)
{% else %}
login
{%$ endif %}
</div>
<hl>{% block head %}{% endblock %}</hl>
{%$ block content %} {% endblock %}
</body>

55

Monday, August 29, 11

Positioning the navigation menu on the page

e Edit the newly created stylesheet to add the following code:

#nav {
float: right;

J

56

Monday, August 29, 11

Correcting user page view

* The navigation menu works well on the main page, but not the user page. To
overcome this problem, we have two options:

e Edit our user_page view and pass the user object to the template

e Use a RequestContext object

e We will modify both main page and user page to use the
RequestContext objects.

57

Monday, August 29, 11

Correcting user page view

® main_page
def main page (request) :
return render to response (
'main page.html', RequestContext (request))
® uSer_page

def user page (request, username):

variables = RequestContext (request, {

'"username': username,
"bookmarks': bookmarks

})

return render to response('user page.html', variables)

58

Monday, August 29, 11

User registration

e Site visitors need a method to create accounts on the site.

e User registration is a basic feature found in all social networking sites these
days.

e \We will create a user registration form and learn about the Django library
that handles form generation and processing

59

Monday, August 29, 11

Django forms

e \Web applications receive input and collect data from users by means of web
forms.

e The Django form's library handles three common tasks:

e HTML form generation

e Server-side validation of user input

e HTML form redisplay in case of input errors

e This library works in a way which is similar to the working of Django's data
models.

60

Monday, August 29, 11

Django forms

e Start by defining a class that represents the form

e This class must be derived from the forms.Form base class

e Attributes in this class represent form fields

e There are methods for HTML code generation, methods to access the
iInput data, and methods to validate the form.

61

Monday, August 29, 11

Designing the user registration form

e Create forms.py file in the bookmarks application folder.

from django import forms

class RegistrationForm(forms.Form) :

username = forms.CharField(label=u'Username', max length=30)
emall = forms.EmailField(label=u'Email')
passwordl = forms.CharField (

label=u'Password', widget=forms.PasswordInput ()

)

passwordZ2 = forms.CharField/(
label=u'Password (Again)', widget=forms.PasswordInput ()

)

62

Monday, August 29, 11

Designing the user registration form

e Several parameters are listed below, which can be passed to the constructor
of any field type.

e 1abel: This parameter creates the label of the field when HTML code is
generated.

e required: This parameter is set to true by default whether the user enters
a value or not. To change it, pass required=False to the constructor.

e widget: This parameter lets you control how the field is rendered in
HTML. We used it earlier to make the CharField of the password a
password input field.

e help text: This parameter displays description of the field when the
form is rendered. 63

Monday, August 29, 11

Commonly used field types

Field type Description

CharField Returns a string

IntegerField Returns an integer

DateField Returns a Python datetime.date object
DateTimeField Returns a Python datetime.datetime object
EmailField Returns a valid email address as a string
URLField Returns a valid URL as a string

64

Monday, August 29, 11

Partial list of available form widgets

Widget type Description

PasswordInput A password text field

HiddenInput A hidden input field

Textarea A text area that enables text entry on multiple lines

FileInput A file upload field

65

Monday, August 29, 11

| earn more about the form’s API| via console

>>2>
>>2>
>>2>

>>2>

>>>

>>>
>>2>
>>2>
>>2>

from bookmarks.forms 1mport *
RegistrationForm ()
print form.as table ()

form

print form[‘username’]

form

print
print
print
print

RegistrationForm ({
‘username’ : ‘test’,

‘emaill’ :
‘passwordl’ : ‘test’,
‘passwordz2’ : ‘test’})

form.
form.
form.
form.

‘testlexample.com’,

1s bound

is valid() // True
cleaned data
errors

66

Monday, August 29, 11

mailto:test@example.com
mailto:test@example.com

Customize validations

e The form in its current state detects missing fields and invalid email
addresses, but we still need to do the following:

® Prevent the user from entering an invalid username or a username that's
already in use

e Make sure that the two password fields match

67

Monday, August 29, 11

Customize validations

e Append the following method to the RegistrationForm class:

def clean password2(self):
if "passwordl' in self.cleaned data:

passwordl = self.cleaned data['passwordl']
password2 = self.cleaned datal['password2']
if passwordl == password2:

return password?2
raise forms.ValidationError ('Password do not match.')

68

Monday, August 29, 11

Customize validations

e Append the following method to the RegistrationForm class:

import re
from django.contrib.auth.models 1mport User

def clean username (self):
username = self.cleaned datal'username']
if not re.search(r'"\w+$', username) :
raise forms.ValidationError ('Username can only contailn
'alphanumeric characters and the underscore.')
try:
User.objects.get (username=username)
except User.DoesNotExist:
return username
raise forms.ValidationError ('Username 1s already taken.')

T

69

Monday, August 29, 11

The registration page view

e Open bookmarks/views.py and insert the following code:

from bookmarks.forms import *
def register page (request):
i1f request.method == 'POST':
form = RegistrationForm(request.POST)
if form.1s valid():
user = User.objects.create user (
username=form.cleaned datal'username'],
password=form.cleaned datal['passwordl'],
emall=form.cleaned datal['email'])
return HttpResponseRedirect ('/")

else:
form = RegistrationForm/()
variables = RequestContext (
request,
{ "form': form })

return render to response (
'registration/register.html',
varilables)

70

Monday, August 29, 11

The registration page template

e Create a new file called templates/registration/register.html and
add the following code to it:

o

{$ extends "base.html" %}
{$ block title %}User Regilstration{% endblock %}

{% block head %}User Registration{% endblock %}

{% block content %}
<form method="post" action=".">{% csrf token %}

{{ form.as p }}

<input type="submit" wvalue="register" />
</form>
{% endblock %}

e \We need to add a URL entry for it

(r'"“register/$', register page),

e Edit the stylesheet
input { display: block; }

71

Monday, August 29, 11

Adding the registration page to the menu

e Open templates/base.html and modify the navigation menu

<body>
<div id="nav'">
home |
{$ 1f user.is authenticated %}
welcome {{ user.username }}
(logout)
{% else %}
login |
register
{%$ endif %}
</diwv>
<hl>{% block head %}{% endblock %}</hl>
{% block content %} {% endblock %}
</body>

72

Monday, August 29, 11

Successful registration page

e |t is better if we displayed a success message after the user completes the
registration process.

¢ |t does not need to generate dynamic content or process input.

e Django already provides a view named direct to template inthe
django.views.generic.simple package for such a task

73

Monday, August 29, 11

Successful registration page

e Create a template, register success.html, for the successful

registration page at templates/registration with the following content:

{% extends "base.html" %}
{% block title %}Registration Successful{% endblock %}
{% block head %}
Reglstration Completed Successfully
{% endblock %}
{% block content %}
Thank you for registering. Your 1information has been
saved 1n the database. Now you can eilther
login or go back to the
main page.
{% endblock %}

74

Monday, August 29, 11

Successful registration page

e To directly link this template to a URL, first add this import statement at the
beginning of urls.py:

from django.views.generic.simple import direct to template

e Next, add the following entry to the URL table:

(r'“register/success/S$"', direct to template,
{'template': 'registration/register success.html'}),

e Finally, modify the register page view in bookmarks/views.py

return HttpResponseRedirect ('/register/success/")

75

Monday, August 29, 11

Account management

e |f we need to add more features about account management such as
updating the password or email address. We can do one of the two things:

e use the views that Django provides for common account management
tasks (as we did while creating the login form)

e design our own form and process its input data (as we did with the
registration form)

/6

Monday, August 29, 11

Account management

e Each views in the django.contrib.auth application expects a certain
template name to be available and passes some variables to this template.

e All views that are available in the django.contrib.auth.views package:

logout: Logs a user out and displays a template when done
logout_then login: Logs a user out and redirects to the login page
password_change: Enables the user to change the password
password change done: Is shown after the password is changed

password_reset: Enables the user to reset the password and receive a new
password via email

password_reset done: Is shown after the password is reset

redirect to login: Redirects to the login page

77

Monday, August 29, 11

Summary

e The current user (User object) is accessible from the request .user attribute
of the Ht tpRequest object passed to the view.

e Django provides a shortcut for loading a template, rendering it, and wrapping
it in an Ht tpResponse object that is called render_to_response (from the

django.shortcuts package).

e Don’t access the user.password directly, use the user.set password
method instead. Because it takes care of password hashing for you.

/8

Monday, August 29, 11

Summary

e A form object can be rendered by using as table, as p, or as_ul method
on it.

e Binding a from to user input can be done by passing user input as a
dictionary to the form’s. is valid () is used to validate the input and

errors attribute will contain found errors in the form.

¢ Input data and clean data are accessible through form.data and
form.cleaned data attributes respectively.

79

Monday, August 29, 11

Introduction Tags

80

Monday, August 29, 11

Topics

¢ Design a tag data model
¢ Build a bookmark submission form

e Create pages for listing bookmarks under a certain tag

e Build a tag cloud
e Restrict access to some pages

e Protect against malicious data input by users

81

Monday, August 29, 11

The tag data model

® The relationship between tags and bookmarks is a many-to-many
relationship, and is represented in Django models using
models.ManyToManyField.

class Tag(models.Model):
name = models.CharField(max_length=64, unique=True)
bookmarks = models.ManyToManyField(Bookmark)
def unicode (self):
return self.name

82

Monday, August 29, 11

The tag data model

S python manage.py sgl bookmarks

CREATE TABLE "bookmarks_tag_bookmarks" (
"1d" integer NOT NULL PRIMARY KEY,
"tag_id" integer NOT NULL,
"bookmark_id" integer NOT NULL REFERENCES "bookmarks_bookmark" ("id"),
UNIQUE ("tag_id", "bookmark_1d")
);

CREATE TABLE "bookmarks_tag" (
"id" integer NOT NULL PRIMARY KEY,
"name" varchar(64) NOT NULL UNIQUE

);

83

Monday, August 29, 11

Creating the bookmark submission form

open the bookmarks/forms.py file and add the following class to it:

class BookmarkSaveForm(forms.Form):
url = forms.URLField(
label=u'URL', widget=forms.TextInput(attrs={'size": 64})
)
title = forms.CharField(
label=u'Title', widget=forms.TextInput(attrs={'size": 64})
)
tags = forms.CharField(
label=u'Tags’', required=False,
widget=forms.TextInput(attrs={'size': 64})
)

84

Monday, August 29, 11

Creating the bookmark submission form

open the bookmarks/views.py file and add the following class to it:

def bookmark_save_page(request):
if request.method == 'POST":
form = BookmarkSaveForm(request.POST)
if form.is_valid():
Create or get link
link, dummy = Link.objects.get_or_create(url=form.cleaned_data['url'])
Create or get bookmark
bookmark, created = Bookmark.objects.get_or_create(user=request.user,link=link)
Update bookmark title.
bookmark.title = form.cleaned_data] 'title']
if the bookmark is being updated, clear old tag list.
if not created:
bookmark.tag_set.clear()
tag_names = form.cleaned_data['tags'].split() # Create new tag list.
for tag_name in tag_names:
tag, dummy = Tag.objects.get_or_create(name=tag_name)
bookmark.tag_set.add(tag)
bookmark.save() # Save bookmark to database.
return HttpResponseRedirect('/user/%s/' % request.user.username)
else:
form = BookmarkSaveForm()
variables = RequestContext(request, { form': form})
return render_to_response('bookmark_save.html', variables)

85

Monday, August 29, 11

Creating the bookmark submission form

Create a file called bookmark_save.html in the templates
folder and insert the following code into it:

{% extends "base.html" %}

{% block title % }Save Bookmark{% endblock %}
{% block head % }Save Bookmark{% endblock %}
{% block content % }

<form method="post" action=".">

{% csrf_token %}
{{ form.as_p }}
<input type="submit" value="save" />

</form>
{% endblock %}

86

Monday, August 29, 11

Creating the bookmark submission form

We are almost there. Open the urls.py file and insert the following entry in it:

(r'*save/$', bookmark_save_page),

87

Monday, August 29, 11

Restricting access to logged-in users

Let's add a link to the bookmark submission form in the navigation menu and
restructure the menu a little. Open the templates/base.html file and update it so

that it looks as follows

<div id="nav">
home |
{% 1f user.is_authenticated %}
submit |
{{ user.username }} |
logout
{% else %}
login |
register
{% endif %}
</div>

How do we make sure that anonymous users cannot submit links?

88

Monday, August 29, 11

Restricting access to logged-in users

We can see whether the user is logged in or not:

if request.user.is_authenticated():
Process form.

else:
Redirect to log-in page.

However, the task of limiting certain pages to logged-in users is
so common that Django provides a shortcut for it,

from django.contrib.auth.decorators import login_required

@]login_required
def bookmark_save_page(request):

89

Monday, August 29, 11

Restricting access to logged-in users

e How will login_required know our login URL?

e By default, it assumes that the page is located at /accounts/login/.

e |[f we want to change this, we can set the login URL in variable called
LOGIN URL that resides in the settings.py file.

e S0, Add the following code at the end of the settings.py file:

LOGIN_URL = "/login/'

90

Monday, August 29, 11

Methods for browsing bookmarks

e Browsing bookmarks lies at the heart of our application.

e Therefore, it is vital to provide a variety of ways for the user to explore
available bookmarks and share them with others.

e Although we intend to provide several ways to browse bookmarks, the
technique used to generate bookmark listings will remain the same.

e First, we build a list of bookmarks using the Django model API.

e Next, we present the list of bookmarks using a template.

91

Monday, August 29, 11

Methods for browsing bookmarks

e \\le can present each bookmark as a link, with a tag and user information
below it. It would be a good idea if we could write one template and reuse it
across all the pages.

e The Django template system provides another powerful mechanism that is
called the include template tag.

e The concept of the include tag is simple. It lets you include the contents
of one template file in another.

92

Monday, August 29, 11

Methods for browsing bookmarks

e Create a new file called bookmark list.html inthe templates directory
and enter the following code into it:

{% if bookmarks %} {% if show_user %}
. <ul class="bookmarks"> Posted by:
{% for bookmark in bookmarks % } <a href="/user/{{ bookmark.user.username }}/"
 class="username">{{ bookmark.user.username }}
 {% endif %} :
{{ bookmark title }}
 L <>
{% if show_tags %} {% endfor %}
Tags: i
{% if bookmark.tag_set.all %} {% else %}
<ul class="tags"> . | <p>No bookmarks found.</p>
{% for tag in bookmark.tag_set.all %} {% endif %}
{{ tag.name }} T
{% endfor %}

{% else %}
None.
{% endif %}

{% endif %}

93

Monday, August 29, 11

Improving the user page

e Now to make use of this template snippet on the user page, we need to
include it from within the user page.html template.

e S0 open the templates/user_page.html file and modify it to look like the
following:

{% extends "base.html" %}
{% block title % }{{ username }}{% endblock %}
{% block head % }Bookmarks for {{ username }}{% endblock %}
{% block content %}
{% include "bookmark_list.html" %}
{% endblock % }

94

Monday, August 29, 11

Improving the user page

e Before we can see the new template in action, we need to modify the user
view and our stylesheet a little.

e Open bookmarks/views.py and change the view as follows:

from django .shortcuts import get_object_or_404
def user_page(request, username):
user = get_object_or_404(User, username=username)
bookmarks = user.bookmark_set.order_by('-id')
variables = RequestContext(request, {
'username': username,
'‘bookmarks': bookmarks,
'show_tags': True

¥)

return render_to_response('user_page.html', variables)

95

Monday, August 29, 11

Improving the user page

e To improve the look of the tag list and avoid nested lists, open the
site media/style.css file and insert the following:

ul.tags, ul.tags i {
display: inline;
margin: 0;
padding: O;

¥

96

Monday, August 29, 11

Creating a tag page

e Next, we will create a similar bookmark listing for tags. For this task, we won't
write any new code.

e | et's start by adding a URL entry for the tag page. Open the urls.py file and
insert the following entry

(r'tag/([M\s]+)/$', tag_page),

97

Monday, August 29, 11

Creating a tag page

e Next, we will create the tag_page view. Open bookmarks/views.py and
insert the following code:

def tag_page(request, tag_name):
tag = get_object_or_404(Tag, name=tag_name)
bookmarks = tag.bookmarks.order_by('-1d’)
variables = RequestContext(request, {
'‘bookmarks': bookmarks,
'tag_name': tag_name,
'show_tags": True,
'show_user': True

})

return render_to_response('tag_page.html', variables)

98

Monday, August 29, 11

Creating a tag page

e L astly, we need to create a template for the tag page. Create a file called
templates/tag page.html with the following contents:

{% extends "base.html" %}
{% block title % } Tag: {{ tag_name }}{% endblock % }
{% block head % }Bookmarks for tag: {{ tag_name } }{% endblock %}
{% block content %}
{% include "bookmark_list.html" %}
{% endblock %}

99

Monday, August 29, 11

Creating a tag page

e Before we try out the new tag page, we will link tag names to their respective
tag pages.

e To do this, open bookmark list.html and modify the section that
generates tag lists as follows:

<ul class="tags">
{% for tag in bookmark.tag_set.all %}
{{ tag.name }}
{% endfor %}

100

Monday, August 29, 11

Building a tag cloud

e A tag cloud is a visual representation of the tags available in a system and of
how often they are used.

* The size of a tag name in the cloud corresponds to the number of items under
this tag.

e The more the items under a certain tag, the larger the font size used to
represent the tag.

101

Monday, August 29, 11

Suilding a tag cloud

e Open the bookmarks/views.py file and create a new view for the tag cloud

page:

def tag_cloud_page(request):

MAX_WEIGHT =5
tags = Tag.objects.order_by(name')

Calculate tag, min and max counts.

min_count = max_count = tags[0].bookmarks.count()

for tag in tags:
tag.count = tag.bookmarks.count()
min_count = tag.count if tag.count < min_count else min_count
max_count = tag.count if max_count < tag.count else max_count

Calculate count range. Avoid dividing by zero.
range = float(max_count-min_count) if max_count != min_count else 1.0

Calculate tag weights.
for tag in tags:
tag.weight = int(MAX_WEIGHT*(tag.count-min_count)/range)

variables = RequestContext(request, {'tags": tags})
return render_to_response('tag_cloud_page.html', variables)

102

Monday, August 29, 11

Building a tag cloud

e Create a file called tag cloud page.html in the templates directory with
the following content:

{% extends "base.html" %}
{% block title % } Tag Cloud{% endblock % }
{% block head % } Tag Cloud{% endblock %}
{% block content % }
<div id="tag-cloud">
{% for tag in tags %}
<a href="/tag/{{ tag.name }}/"
class="tag-cloud-{{ tag.weight }}">{{ tag.name }}
{% endfor %}
</div>
{% endblock %}

103

Monday, August 29, 11

Suilding a tag cloud

e Next, we will write CSS code to style the tag cloud. Open the site_media/
style. css file and insert the following code:

#tag-cloud {

text-align: center;
¥
#tag-cloud a {

margin: 0 0.2em;
¥
tag-cloud-0 { font-size: 100%; }
tag-cloud-1 { font-size: 120%; }
tag-cloud-2 { font-size: 140%; }
tag-cloud-3 { font-size: 160%; }
tag-cloud-4 { font-size: 180%:; }
tag-cloud-5 { font-size: 200%; }

104

Monday, August 29, 11

Building a tag cloud

e Finally, add an entry to the urls.py file. We will map tag_cloud_page to the
URL /tag/ (without a tag name after it):

(r'tag/$', tag_cloud_page),

105

Monday, August 29, 11

A word on security

e The golden rule in web development is "Do not trust user input, ever."

e You must always validate and sanitize user input before saving it to the
database and presenting it in HTML pages.

e Two common vulnerabillities in web applications:

e SQL injection

e Cross-Site Scripting (XSS)

106

Monday, August 29, 11

SQL injection

e SQL injection vulnerabilities happen when the developer uses input to
construct SQL queries without escaping special characters in it.

e As we are using the Django model API to store and retrieve data, we are safe
from these types of attacks.

e The model APl automatically escapes input before using it to build queries.

e So we do not need to do anything special to protect our application
from SQL injections.

107

Monday, August 29, 11

Cross-Site Scripting (XSS)

e A malicious user supplies JavaScript code within input. When this input is
rendered into an HTML page, the JavaScript code is executed to take control
of the page and steal information such as cookies.

e Again, Django automatically does this for us by escaping template variables
before printing them to a page.

® For example, a user may submit the following string as a bookmark title:

e <script>alert ("Test.");</script>

108

Monday, August 29, 11

Template filters

e There are times when you want to disable auto-escaping.

e a piece of HTML-formatted text that has already been sanitized

e Django provides a feature called template filters to process variables before
printing them in a template.

e safe filter : disables auto-escaping and prints the template variable as is

e urlencode filter : escapes a string for use in a URL

109

Monday, August 29, 11

Template filters

e | et's use the urlencode filter in the templates/bookmark list.html
file.

<ul class="tags">
{% for tag in bookmark.tag_set.all %}
{{ tag.name }}
{% endfor %}

e You will need to do a similar change to templates/
tag cloud page.html file:

<div id="tag-cloud">
{% for tag in tags %}
<a href="/tag/{{ tag.namelencodeurl }}/"
class="tag-cloud-{{ tag.weight }}">{{ tag.name }}
{% endfor %}
</div>

110

Monday, August 29, 11

