
Files

Sutee Sudprasert

เนื้อหาส่วนใหญ่ ลอกมาจาก Mark Pilgrim. Dive into Python
http://greenteapress.com/thinkpython/html/book015.html

1

Sunday, July 24, 2011

Files

• Persistent

• the programs keep at least some of their data in permanent storage and if
they shut down and restart, they pick up where they left off.

• One of the simplest ways for programs to maintain their data is by reading
and writing text files.

2

Sunday, July 24, 2011

Reading

• Open

• Read

>>> fin = open('words.txt')
>>> print fin
<open file 'words.txt', mode 'r' at 0xb7f4b380>

>>> fin.readline()
'aa\r\n'

fin = open('words.txt')
for line in fin:
 word = line.strip()
 print word

3

Sunday, July 24, 2011

Writing

• Open

• Write

• Close

>>> fout = open('output.txt', 'w')
>>> print fout
<open file 'output.txt', mode 'w' at 0xb7eb2410>

>>> line1 = "This here's the wattle,\n"
>>> fout.write(line1)

>>> fout.close()

4

Sunday, July 24, 2011

Open

• Append

• Binary

>>> fout = open('output.txt', 'w+')
>>> print fout
<open file 'output.txt', mode 'w+' at 0x38f180>

>>> fout = open('output.txt', 'wb')
>>> print fout
<open file 'output.txt', mode 'wb' at 0x38f180>

5

Sunday, July 24, 2011

Using with statement

• Python 2.5+

• fin will have been automatically closed, even if the for loop raised an
exception partway through the block.

with open(“file.txt”) as fin:
 for line in fin:
 word = line.strip()
 print word

6

Sunday, July 24, 2011

http://docs.python.org/reference/compound_stmts.html#for
http://docs.python.org/reference/compound_stmts.html#for

Format operator

• % is the modulus operator when applied to integer, but when the first
operand is a string, % is the format operator

• the first operand is the format string, which contains one or more format
sequences

• the second operand is formatted following the format string

• the result is a string

>>> camels = 42
>>> '%d' % camels
'42'

7

Sunday, July 24, 2011

Format operator

• '%d' to format an integer, '%g' to format a floating-point number , and '%s'
to format a string

• The number of elements in the tuple has to match the number of format
sequences in the string.

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')
'In 3 years I have spotted 0.1 camels.'

>>> '%d %d %d' % (1, 2)
TypeError: not enough arguments for format string
>>> '%d' % 'dollars'
TypeError: illegal argument type for built-in operation

http://docs.python.org/release/2.5.2/lib/typesseq-strings.html (more details about format string)
8

Sunday, July 24, 2011

http://docs.python.org/release/2.5.2/lib/typesseq-strings.html
http://docs.python.org/release/2.5.2/lib/typesseq-strings.html

Filenames and paths

• The os module provides functions for working with files and directories

9

>>> import os
>>> cwd = os.getcwd()
>>> print cwd
/home/dinsdale

>>> os.path.abspath('memo.txt')
'/home/dinsdale/memo.txt'

>>> os.path.exists('memo.txt')
True

>>> os.path.isdir('memo.txt')
False
>>> os.path.isdir('music')
True

returns the name of the current directory

 returns the absolute path to a file

checks whether a file or directory exists

checks whether it’s a directory

Sunday, July 24, 2011

Filenames and paths

10

>>> os.listdir(cwd)
['music', 'photos', 'memo.txt']

returns a list of the files (and other
directories) in the given directory

def walk(dir):
 for name in os.listdir(dir):
 path = os.path.join(dir, name)

 if os.path.isfile(path):
 print path
 else:
 walk(path)

the following example “walks” through a directory, prints the names
of all the files, and calls itself recursively on all the directories

The os module provides a function called walk
that is similar to this one but more versatile.

Sunday, July 24, 2011

Filenames and paths

11

>>> os.path.join(‘images’,‘dogs’,‘test.png’)
‘images/dogs/test.png’ # Mac and Linux
‘images\dogs\test.png’ # Windows

Dictionaries and files manipulation

mkdir(path[, mode])
link(src, dst)
symlink(src, dst)
remove(path)
rename(src, dst)
rmdir(path)

Sunday, July 24, 2011

Databases (a simple one)

12

• Most databases are organized like a dictionary in the sense that they map
from keys to values.

• The biggest difference is that the database is on disk (or other permanent
storage), so it persists after the program ends.

• The module anydbm provides an interface for creating and updating database
files

Sunday, July 24, 2011

Databases

• Opening a database is similar to opening other files:

• If you create a new item, anydbm updates the database file.

• When you access one of the items, anydbm reads the file:

13

>>> import anydbm
>>> db = anydbm.open('captions.db', 'c')

'c' means that the database should be created if it doesn’t already exist.

>>> db['cleese.png'] = 'Photo of John Cleese.'

>>> print db['cleese.png']
Photo of John Cleese.

Sunday, July 24, 2011

Databases

• If you make another assignment to an existing key, anydbm replaces the old
value:

• Many dictionary methods, like keys and items, also work with database
objects. So does iteration with a for statement.

• you should close the database when you are done:

14

>>> db['cleese.png'] = 'Photo of John Cleese doing a silly walk.'
>>> print db['cleese.png']
Photo of John Cleese doing a silly walk.

for key in db:
 print key

>>> db.close()

Sunday, July 24, 2011

Pickling

• A limitation of anydbm is that the keys and values have to be strings. If you
try to use any other type, you get an error.

• The pickle module can translate almost any type of object into a string
suitable for storage, and then translates strings back into objects.

15

Sunday, July 24, 2011

Pickling

• pickle.dumps takes an object as a parameter and returns a string
representation (dumps is short for “dump string”):

• pickle.dump takes an object and a file object as parameters and return
True if it succeeds otherwise False.

16

>>> import pickle
>>> t = [1, 2, 3]
>>> pickle.dumps(t)
'(lp0\nI1\naI2\naI3\na.'

>>> t = [1, 2, 3]
>>> with open(‘list.pkl’,’w’) as fout:
>>> pickle.dump(t, fout)

Sunday, July 24, 2011

Pickling

• pickle.loads (“load string”) reconstitutes the object:

• pickle.load reconstitutes the object from an opened file object:

17

>>> t1 = [1, 2, 3]
>>> s = pickle.dumps(t1)
>>> t2 = pickle.loads(s)
>>> print t2
[1, 2, 3]

>>> with open(‘list.pkl’) as fin:
>>> t2 = pickle.load(fin)
>>> print t2
[1, 2, 3]

Sunday, July 24, 2011

Pipes

• Any program that you can launch from the shell can also be launched from
Python using a pipe.

• A pipe is an object that represents a running process.

• If you don’t want to read the output or pass any parameter to the process,
you can use:

18

>>> import subprocess
>>> subprocess.call([‘ls’,’-l’])
total 8
-rw-r--r-- 1 sutee staff 0 Jul 19 15:19 output.txt
-rw-r--r--@ 1 sutee staff 2542 Jul 19 13:25 thainum.py
0

Sunday, July 24, 2011

Pipes

• Read from stdout

• Read from stdout and write to stdin

19

>>> cmd = 'ls -l'
>>> fp = os.popen(cmd)
>>> res = fp.read()
>>> stat = fp.close()

>>> from subprocess import Popen, PIPE
>>> p = Popen([“wc”], stdin=PIPE, stdout=PIPE)
>>> p.stdin.write(“test test\ntest test”)
>>> p.stdin.close()
>>> res = p.stdout.read()
>>> stat = p.stdout.close()

Sunday, July 24, 2011

Writing modules

• Any file that contains Python code can be imported as a module.

• For example: wc.py

• You can import it like this:

20

def linecount(filename):
 count = 0
 for line in open(filename):
 count += 1
 return count
print linecount('wc.py')

>>> import wc
7
>>> wc.linecount('wc.py')
7

Sunday, July 24, 2011

Writing modules

• The only problem with this example is that when you import the module it
executes the test code at the bottom.

• Normally when you import a module, it defines new functions but it doesn’t
execute them.

• Programs that will be imported as modules often use the following idiom:

21

if __name__ == '__main__':
 print linecount('wc.py')

Sunday, July 24, 2011

