1

Notes on Number Theory and Computation

Cardcaptor
March 10, 2010

Divisions
If @ and b are integers with a # 0, we say that a divides b if there is an integer ¢ such that b = ac.
When a divides b, we say that a is a factor of b and that b is a multiple of a.

We use the notation a | b to denote the fact that a divides b.
For examples, 2 | 6 and 7 | 14.

Let a and b be integers. Then

1. ifa| band b | ¢, then a | ¢;

2. if a | b, then a | be for all integer ¢;

3.ifa|band a|c thenal (b+ c).
Division Algorithm: Let a be an integer and d a positive integer. Then there are unique integers ¢
and 7 such that a = qd+r and 0 < r < d.

We call g the quotient and r the remainder of dividing a with d. For example, since 4649 = 110x42+-29,
we have that 110 is the quotient of dividing 4649 with 42, and 29 is the remainder.

We use the notation a mod b to denote the remainder of dividing a by b; i.e., 4649 mod 42 = 29.
With modern CPUs, you can compute quotients and remainders in O(1) time. However, computing
remainders is consider a very slow operating, consuming quite a lot of CPU cycles.

An integer a is said to be a common divisor of b and cif a | band b | c.

For example, 15 is a common divisor of 30 and 45.

The greatest common divisor (GCD) of integers a and b, one of which is not zero, is the largest positive

integer that is a common divisor of both a and b. We denote the GCD of a and b with the symbol
ged(a, b).

For examples, ged(30,45) = 15, ged(2,7) = 1, and ged (42, 39) = 3.

The GCD have the following properties:

1. ged(a,b) = ged(b,a);

2. ged(a,b) = ged(—a, b);

3. ged(a,b) = ged(lal, [b]);

4. ged(a,0) = |af;

5. ged(a, ka) = |a| for all integer k;

6. (**) ged(a, b) is the smallest positive integer in the set {az + by : z,y € Z} of linear combinations
of a and b;

7. if d is a common divisor of a and b, then d | ged(a, b);
8. ged(na,nb) = nged(a, b) for all positive integer n;
9. ged(a,b) = ged(a, b+ ax) for all z;

10. for all positive integer n, a, and b, if n | ab and ged(a,n) = 1, then n | b.

e Fzercise: Let us prove the last property of GCD above.

Since ged(a,n) = 1, we can find x and y such that az+ny = 1. Now, n = ged(n, ab) < ged(n, axd) < n.
So, it must be the case that gcd(n, axb) = n as well. Using Property 9, we have that

n = ged(n, axd) = ged(n, axb + nyb) = ged(n, (ax + ny)b) = ged(n, b).
This implies that n | b.
e GCD Recursion Theorem: If b > 0, then ged(a,b) = ged (b, a mod b).

e Euclid’s algorithm is an algorithm that computes the GCD of two non-negative integers. It makes
use of the GCD recursion theorem to compute the GCD as follows:

EucLip(a, b)

1 ifb=0
2 then return a
3 else return EucLID(b,a mod b)

For example,

EucLID(4649,42) = EucLip(42,29) = EucLip(29, 13) = EucLip(13, 3)
= Eucrip(3,1) = EucLip(1,0) = 1.

What is the time complexity of this algorithm? We know that, each time it is called, EUCLID spends
O(1) time deciding whether b = 0 and calculating a mod b. Thus, the running time depends on the
number of times EUCLID is called recursively.

The analysis of the running time of Euclid’s algorithm involves the Fibonacci number Fj, defined as
follow: Fy =0, Fy =1, and Fy = Fy_1 + Fy_o for all k£ > 2.

Lemma 1. Ifa > b > 1 and EUCLID(a, b) performs k > 1 recursive calls, then a > Fyyo and b > Fyy1.

Proof. The proof is by induction on k. In the base case, k = 1, if EUCLID(a, b) performs 1 recursive
call, then b # 0. So, b > 1 = F5. Since a > b, we have that a > 2 = F3. The base case is established.

Inductively, assume the lemma is true if at least k¥ — 1 calls are made. Consider a and b such that
EucLIiD(a,b) makes at least k recursive calls. This implies that EucLID(b, a mod b) makes at least
k — 1 recursive calls. This implies that b > Fj41 and (@ mod b) > Fj,. Since a = ¢b + (a mod b) for
some q > 1, we have that

a>b+ (amod b) > Fi1 + F, = Fiqa.

We have established the fact that @ > Fj49 and b > Fj41. So, by induction, the lemma is true for all
k>1. O

The contrapositive of the above lemma is the following theorem:

Theorem 2 (Lamé’s Theorem). Let k > 1. Ifa > b > 1 and b < Fyy1, then EUCLID(a,b) performs
fewer than k recursive calls.

So what’s the running time of EucLID(a,b)? It is O(k) where k is the smallest integer such that
Fiy1 > b. We know that Fj, ~ ¢*/v/5, where ¢ = (1 +/5)/2. So, k = O(logb). That is, Euclid’s
algorithm runs in time linear in the number of bits used to represent the inputs. In other words, it is
linear in the size of the input.

e Extended Euclid’s Algorithm: We shall see later that it is sometimes useful not only to compute
ged(a, b) but to also compute z and y such that ged(a,b) = ax + by.

Doing so by hand is quite easy. Let us compute ged(48,30):

48 = 1(30) + 18,
30 = 1(18) + 12,
18 = 1(12) +
12 = 2(6).

Looking at two lines before the last, we have that 6 = 1(18)—1(12) and 12 = 1(30)—1(18). Substituting,
we have that 6 = 1(18) — 1(1(30) — 1(18)) = —1(30) + 2(18). Looking at the first line, we have that
18 = 1(48) — 1(30). So, 6 = —1(30) + 2(1(48) — 1(30)) = 2(48) — 3(30). So =2 and y = —3.

Let us codify the process we just went through a little bit. When we compute ged(a, b) where b # 0,
we compute ged(b,) where r = a mod b. Let us be wishful and assume that ged(b,) return 2’ and
y’ such that ba’ 4+ ry’ = ged(b,r) = ged(a,b). Then, let ¢ be such that a = ¢b 4+ r. We then have
r = a — gb, and so

ged(a,b) = bz’ +ry’ = bz’ + (a — qb)y’ = ay’ + (2’ — qy’)b.

Thus, we can return z =3 and y = 2’ — qy’.
The remaining case is when b = 0. In this case, it is safe to return =1 and y = 0.

Let us the above description into pseudocode.

EXTENDED-EUCLID(a, b)

1 ifb=0

2 then return (a, 1,0)

3 else ¢ < |a/b]

4 r «— a mod b

5 (d,x',y") < EXTENDED-EUCLID(b, 1)
6 return (d,y', 2’ — qy’)

Modular Arithematic

o A group (S, @) is a set S together with a binary operation @ : S x .S — S with the following properties:
1. Identity: There exists an element e € S called the identity of the group such that e s =sde
for all s € S.
2. Associativity: For all a,b,c € S, we have (a @b) Bc=a® (b c).
3. Inverses: For all a € S, there exists b € S. called the inverse of a such that a @b=bPa =e.

Examples of groups includes (Z,+) and (R — {0}, x). What is the identity of (R — {0}, x)? What is
the inverse of a in (Z,+)?

e A group (S,®) is called an abelian group if, for all a,b € S, a® b = b P a. In other words, (S, ®) is
abelian if & is commutative.

(Z,4) and (R, x) are abelian groups.

e Let n be a natural number. Let us consider the binary operation +,, defined as follows: for any a,b € Z,
a+n b= (a+b) modn.

The operator +,, and the set {0,1,2,...,n— 1} forms a group called the additive group modulo n, and
it is denoted by the symbol Z,,.

For example, in Zg, we have that 1 +¢5 =0 and 4 +¢ 5 = 3.

e Two integers a and b are said to be congruent modulo m, for some positive integer m, if m | (a — b).
This fact is denoted by the symbol a = b (mod m).
For examples, 10 =1 (mod 3) and —1 = 14 (mod 5).

e Congruence modulo m has the following properties:

a=0b (mod m) if and only if b = a (mod m);

if a=b (mod m) and b = ¢ (mod m), then a = ¢ (mod m);

a =b (mod m) if and only if @ mod m = b mod m;

ifa=b (mod m) and ¢ =d (mod m), then a + ¢ =b+d (mod m) and ac = bd (mod m);

RAN- R o

if @ = b (mod m) then a* = b* (mod m) for all non-negative integer k.

Congruence is pretty much like equality. There’s a catch though. In general, if ac = be and ¢ # 0,
then we know that a = b. However, this needs not be true in congruences. For example, we have that
2x4=4x4 (mod 8), but 2 # 4 (mod 8).

e Recursive Squaring: You are given an integer a, a non-negative integer k, and a positive integer m.
You are asked to find b such that 0 < b < m and a* = b (mod m); in other words, a* mod m. What’s
an efficienty to compute this?

Observe that

1 if k=0,
a® mod m = { (a*/2 mod m)? mod m, if k is even,
a(a®*=Y/2 mod m)? mod m, if k is odd.

So, we can compute a® mod m by computing al¥/2) squaring it, and multiply by a if % is odd. Putting
the idea into pseudocode, we have

EXPONENT(a, k, m)
if k=0
then return 1
elseif k is even
then e = EXPONENT(a, k/2,m)
return e mod m
elseif k is even
then e = EXPONENT(a, (k — 1)/2,m)
return (ae?) mod m

0 O Ui Wi

The running time of this algorithm is O(log k).

e What’s the solutions to the equation ax = b (mod n) for a > 0 and n > 07

First, let us determine if the equation has any solution at all. The equation is equivalent to the
statement n | (ax — b); in other words, there exist an integer y such that ny = ax — b or b = az — ny.
That is, b is in the set of linear combinations of @ and n. Using the properties of GCD two pages above,
we conclude that b must be divisible by ged(a,n).

Proposition 3. The equation ax =b (mod n) is solvable if and only if gcd(a,n) | b.

Next, if the equation is solvable, what are the solutions then?

Let d = ged(a,n). We can use EXTENDED-EUCLID(a,n) to find z’ and y’ such that ax’ 4+ ny’ = d.
Multiplying both sides by b/d, we have a((b/d)z’) + n((b/d)y’) = b, which means a((b/d)z’) = b
(mod n). Hence, x = (b/d)x’ is a solution.

If the equation is solvable, then there are infinitely many solutions. For each integer i, observe that
a((b/d)x’ +i(n/d)) + n((b/d)y’ —i(a/d)) = a((b/d)z") + n((b/d)y’) + an/d — an/d = b.

So, (b/d)x’ 4+ i(n/d) is a solution for all i. We shall show that these are all the solutions.

Observe that if z is a solution, then z + i(n/d) is also a solution. Thus, if there are solutions other
than (b/d)x’ +i(n/d), then there must be one solution which is equal to (b/d)x’ 4+ k, where k < n/d.
So, assume by way of contradiction that such a k exists. We have that a((b/d)z’ + k) = b (mod n),
which implies ak = 0 (mod n); in other words, n | ak. would imply that n/d has to divide (a/d)k.
Since ged(n/d,a/d) = 1, n/d must divides k. However, k < n/d so this is impossible. Contradiction.

Theorem 4. Let ©' and y' are integers such that ged(a,n) = ax’ + ny’. Suppose that the equation
ax = b (mod n) is solvable. Then, all the solutions of this equation can be written as (b/d)x’ 4+ i(n/d)
for some i € Z.

Collorary 5. If ged(a,n) =1, then the equation ax =1 (mod n) has a unique solution modulo n. (In
other words, there exists one and only one x such that 0 < x < n and x satisfies the equation.)

For integer a and positive integer n, a multiplicative inverse modulo n of a is an integer such b that
ab=1 (mod n).

From the above corollary, we know that the multiplicative inverse is unique modulo n. We let a~*
denotes the unique inverse modulo n of a.

Two integers a and b, both not 0, are relatively prime if ged(a,b) = 1.

Integers a1, as, ..., ay, none of them 0, are pairwisely relatively prime if ged(a;,a;) =1 for all ¢, j.
For example, 6, 5, and 143 are pairwisely relatively prime.

The nice property of mutually relatively prime set of integers is that, if you pick any two numbers
from the set, say = and y, then you can always find ~! modulo y and y~! modulo z. More generally,
you can partition the set into two sets, and the products of the numbers in the two sets are relatively
prime.

Consider the following question. A brigade of marines has x soldiers. If the commander makes them
line up so that there are 3 soldiers in each row, the last row has 2 soldiers. If the commander makes
them line up so that there are there are 4 soldiers in each row, the last row has 1 soldiers. If the
commander makes them line up so that there are 5 soldiers in each row, the last row has 3 soldiers.
What’s the minimum number of soldiers in this brigade?

This type of question can be answered by making use of the following theorem:

Theorem 6. (Chinese Remainder Theorem) Let ny, na, ..., ny be pairwisely relatively prime numbers.
The system of equation

=a; (mod nyg)

as (mod ny)

8
Il

ar, (mod ny)

has a unique solution modulo ning - - - ng.

Proof. Let us proof first that there exists at most one solution modulo nns - - - ng. Suppose that there
are x1 and xo that satisfies the above system of equations. Then, z; — 2 =0 (mod n;) for all . This
is only possible if 1 — x93 = 0. So =1 = x».

Next, we have to show that there exists at least one solution. Let N = nins---ny, and let N; = N/n;
for all i. Since N; is relatively prime to n;, there exists a number I; such that N;I; =1 (mod n;).

Consider the number M = NiIla1 + Nolsas + - -+ + NiIrar. We have that

M = NyIiay + Nolsag + - - - + NiIpay (mod n;)
= N;Lia; + n;((N1/n;) a1 + (No/n;)Izas + - - - + (Ng/ni) Iyar) (mod n;)
= NzIzaz (mOd nl)
=aq; (mod n;)
for all 7. So there exists at least one solution. We are done. O

Primes

A positive integer p > 1 is called prime if its only factors are 1 and itself.
2, 3,5, 7,11, 13, 17 are the seven smallest prime numbers.
Let S be a set, and @ and ® be binary operations on S. The tuple (S, ®,®) is called a field if the
following properties hold:
1. Associativity: For any a,b,c € S, we have that (a®b)@c=a® (bPc) and (a®b)@c=a® (b®c).
2. Commutativity: For any a,b € S, we have that a Db=0Pa and a®b=>b® a.
3. Distributivity: For any a,b,c € S, we have that a @ (b® ¢) = (a®b) @ (a ® ¢).
4

. Identity: There exists e and ¢ in S such that a e =e®a=aand a®i =1 ® a = a for all a.
Here, e is called the additive identity and multiplicative identity.

5. Additive Inverse: For every a € S, there exists a number b, called the addtive inverse of a and
denoted by —a, such that a &b =e.

6. Multiplicative Inverse: For every a # e in S, there exists a number b, called the multiplicative
inverse of a and denoted by a~!, such that a ® b = i.

(R, +, x) and (Q, +, x) are fields. What are their identities?

Consider the group Z, where p is a prime number. Define operator -, as follows:
a-p b= (ab) mod p.

We have that (Z,,+p,) is a field. We often use Z, to denote the field without mentioning the two
binary operations. What are the identities of Z,?

Given a € Z, such that a # 0, how does one calculate a=1?
Well, by using EXTENDED-EUCLID.

Remember that a~! is a number such that aa=! =1 (mod p). Therefore, we can run EXTENDED-EUCLID(a, p)
to get @ and y such that az + py = 1. It follows that a=! = (mod p).

The following lemma leads to a fundamental theorem in mathematics:

Lemma 7. Let a and b be integers and p be a prime. If p | ab, then p | a orp | b.

Proof. Assume that p divides ab and p does not divide a. Let ab = c¢p. We have that ged(a,p) = 1, so
there exist « and y such that ax + py = 1. This implies that b = b(ax + py) = bax + bpy = cpx + bpy =
p(ex + by). Hence, p divides b. O

Theorem 8. (Fundamental Theorem of Arithemetic) Every non-zero integer n can be expressed as
n = +py'pst - pit

where the p; are distinct primes and the e; are positive integers. Moreover, this expression is unique
up to a reordering of the primes.

Another consequence of Z, being a field is the following famous theorem:

Theorem 9. (Wilson’s Theorem) If p is a prime, then
(p—1!'=-1 (mod p).

Proof. Consider the set {1,2,...,p — 1}. Every number except 1 and p — 1 can be paired with its
multiplicative inverse. Hence, (p — 1)! = 1(—1) = —1 (mod p). O

We also have another useful theorem:

Theorem 10. (Fermat’s Little Theorem) If a is an integer and p a prime, then
a? =a (mod p).

Proof. The claim is trivially true for all a such that p | a. So let us assume that a is not a multiple of
p. Consider the set S = {a,2qa,3a,...,(p — 1)a}. We have that there are no two different elements ia
and ja in S such that ia = ja (mod p) because that would imply that ¢ = j (mod p). Note also that
none of the elements in S is divisible by p. So, the elements of S, when reduced into Z,, is equal to
the set {1,2,...,p — 1}. Therefore,

a(2a)(3a)---((p—1)a) = (p—1)! (mod p)
a~Hp-1!'=(p-1)! (mod p)
a1 =1 (mod p)
It follows that a? = a (mod p). O

Hashing

The dictionary ADT supports the following operations:

— insert(x): Insert x into the dictionary.
— remove(z): Remove x from the dictionary.
— find(z): Check whether z is in the dictionary.
A hash table is an implementation of the dictionary ADT where the items to manipulate are integers or

can be mapped to the integers. Let us suppose that the items comes from the set [U] = {0,1,...,U—1}
for some positive integer U.

A hash table consists of an array a with M slots, and a hash functions h : [U] — [m]. The array a
starts empty. The three operations can be implemented as follows:

— insert(xz): Compute h(z) and put z in a[h(z)].

— remove(z): Compute h(z) and remove x from a[h(x)] if it is there.
— find(z): Compute h(x) and check whether z is in alh(z)].

The simple implementation above has the problem of collision: there may be x1,25 € [U] such that
x1 # x2 and h(xy) # h(zz). Collision is unaviodable if U > m.

There are many ways to resolve collision. The most simple way is called chaining: instead of each slot
storing only one item, it stores a linked list of items placed there. It is clear that the performance of
hasing with chaining depends on the distribution of items into slots. Any operation involving items
that go into a particular slot takes time linear to the number of items already in the slot.

We are interested in the problem of building static hash tables. A fixed set of n items {x1,za,...,2,} C
[U] is given to us. We would like to build a data structure that can perform find(z) — i.e., testing
whether z belongs to the set — very fast. An example of an application of static hash table is the
English language dictionary.

We describe a scheme invented by Fredman, Komlés, Szemerédi, which builds a static hash table for n
items in O(n) expected time using O(n) space and each find(x) operation takes O(1) worst case time.

The mathematical tool used in the scheme is the universal family of hash functions.

Definition 11. A set of hash functions H is called a universal family of hash function if, for all
x,y € [U] such that x # y,

In other words, if we pick a random hash function out of h, the probability that any two fixed items
collide is a constant over the size of the hash table.

Is it easy to construct a universal family of hash function? Yes. We first pick a prime number p > U,
and let

Hpm ={hap:ac{l,2,...,p—1},b€{0,1,...,p—1}},
where
hab(z) = ((az + b) mod p) mod m.

Proposition 12. H, ,, is a universal family of hash function.

We prove the following lemma first:

Lemma 13. Let z,y,z,w € [p| be such that x #y. Then,

1
Pr ar+b)modp=2 A (ay+b) modp=w|=—.
@il Jmody oy +b)mod p=wl =1,

Proof. The fact that (ax 4+ b) mod p = z and (ay + b) mod p = w is equivalent to the following system
of equations:

ax+b=2z (mod p)

ay+b=w (mod p)

which is equivalent to the following matrix equation:

sl =] emean.

The two-by-two matrix has determinant x — ¥, which is not zero. This means that there is one and only
one solution to the system of equation. Since we pick a and b uniformly at random, the probability
that a and b make up the solution for the system is 1/p. O

Proof. (Proposition) Fix z,y € U such that x # y. We have that hyp(x) = hep(y) if and only if
(az +b) mod p = z for some pair of z and w such that z =w (mod m).

We claim that there are at most 4p?/m such (z,w) pairs. To see why, consider the set 0,1,...,p — 1.
It can be partitioned into m subsets based on the value of each element modulo m. Each subset has
at most 2p/m elements. Any pair of elements in each subset are congruent modulo m, so there are
4p? /m? pairs per subset. Since there are m subsets, it follows that there are at most 4p?/m pairs.

By the union bound,

Pr [hep(2) = hap(y)] < Z @ b)P’i[p]z[(ax +b)modp==2 A (ay+b) mod p = w]

1 4p? /1 4
- Y <t (F)-a
p? = m \ p? m

z=w(mod m)

as desired. O

We now describe the construction of FKS dictionary. We pick m > cn for some constant ¢ and let H
be a universal family of hash functions. We try pick h from H at random, and hash x1, xs, ..., x, into
the table. We stop if there are no more than n collisions. Otherwise, we pick a new hash function an
try again.

We show that the above process takes O(n) expected time. Let I;; be an indicator random variable
such that I;; = 1 if and only if x; = x;. Then,

E[#collisions]:E[Z Iij}: Z E(l;] = Z O(:(;)<n720(1):0(1)n.

— — — 2 cn 2c
1<i<j<n 1<i<j<n 1<i<j<n

We can use ¢ large enough such that the expected number of collisions is less than n/2. By Markov’s
inequality, the probability that the number of collisions is greater than n is less than 1/2. Thus, the
expected number of trials is constant. Since each trial takes linear time, the process takes expected
linear time.

Now, we look to the m slots of the hash table produced above. Let there be n; elements in slot ali].
For each slot, we create a collision-free hash table of size cn? by the process above: we pick a hash
function from h, hash the elements, and try again if there’s a collision. We claim that this process
takes O(n?) expected time because

E[#collisions] <

Summing the time and space used for all slots together, the total time and space taken is O(n3) +
O(n})+...+0(n2,_,) = O(n) because the total number of collisions is less than ng +nf+---+n2_;.

