Introduction to Refactoring

Sutee Sudprasert

Saturday, July 14, 12

Credits

e Refactoring : Improving the design of existing code - Martin Fowler

e Design Patterns - GOF

Saturday, July 14, 12

What is refactoring?

e “Refactoring is the process of changing a software system in such a way that
It does not alter the external behavior of the code yet improves its internal
structure.” - Refactoring : Preface

e You are improving the design of the code after it has been writing.

e A good design comes first, and the coding comes second.

e A good design may turn to bad over time the code will be modified.

e \With refactoring you can take a bad design, and rework it into well-designed
code.

Saturday, July 14, 12

Refactoring, a First Example (In Python)

e The sample program is a program to calculate and print a statement of a
customer’s charges at a video store.

e Input: movies that a customer rented and for how long

e Qutput: the charges which depend on

* how long the movie is rented

e identifies the type movie (regular, children’s, new releases)

Saturday, July 14, 12

The starting point

vie wstomer
Mo 1 Rental) Cust
priceCode: im oy daysRemed: int -
e 1
slatementy()
aCustomer aRental aMovie
= | |
statement | |
* [for all rentals] | |
gelMovie g |
getPriceCode |).I
gelDaysRented | |
=] |
| |

Saturday, July 14, 12

The starting point

e python code

Saturday, July 14, 12

What’s wrong with this code”

e |t is not well designed and certainly no object oriented.
e There’s nothing wrong with a quick and dirty simple program

e But there are some real problems with this program if this is a
representative fragment of a more complex system

e The statement routine in Customer class is too long and does many of things
that it does should really be done by the other classes

e A poorly designed system is hard to change because it is hard to figure out

where the changes are needed (it is easy to make a mistake and introduce
bugs)

Saturday, July 14, 12

What’s wrong of this code”

e Suppose the users would like a statement printed in HTML

e it is impossible to reuse any of behavior of the current statement method

® you can just copy the statement method and make whatever changes you
need

e \What happens when the charging rules change?

e you have to fix both statement and htmlStatement

e if you are writing a program that you don't expect to change, then cut and
paste is fine.

Saturday, July 14, 12

What’s wrong of this code”

e \What if the user want to make changes to the way the classify movies, but
they haven’t yet decided on the change they are going to make? These
changes will affect both

e the way renters are charged for movie
e the way that frequent renter points are calculated

e The statement method is where the changes have to be made to deal with
changes in classification and charging rules

e Furthermore, as the rules grow in complexity it's going to be harder to figure
out where to make the changes and harder to make them without making a
mistake.

Saturday, July 14, 12

First step : Extract Method

determine amount for each line
1f rental.movie.price code == Movie.REGULAR:
this amount +=
1f rental.days rented > Z:
this amount += (rental.days rented - 2) *
elif rental.movie.price code == Movie.NEW RELEASE:
this amount += rental.days rented *
elif rental.movie.price code == Movie.CHILDRENS:
this amount +=
1f rental.days rented > 5:
this amount += (rental.days rented - 3) *

amount for (rental) : return this amount

Saturday, July 14, 12

Second step : Rename Variables

it doesn’t make sense for this context

*/T////,) ¢

this amount)=
determine amount for each line

1f rental.movie.price code == Movie.REGULAR:
this amount +=
1f rental.days rented > :
this amount += (rental.days rented - 2) *
elif rental.movie.price code == Movie.NEW RELEASE:
this amount += rental.days rented *
elif rental.movie.price code == Movie.CHILDRENS:
this amount +=
1f rental.days rented > 3:
this amount += (rental.days rented - 3) *
return this amount

11

Saturday, July 14, 12

Second step : Rename Variables

result =
determine amount for each line
1f rental.movie.price code == Movie.REGULAR:
result +=
1f rental.days rented >
result += (rental.days rented - 2) *
elif rental.movie.price code == Movie.NEW RELEASE:
result += rental.days rented *
elif rental.movie.price code == Movie.CHILDRENS:
result +=
1f rental.days rented >
result += (rental.days rented - 3) *

return result

12

Saturday, July 14, 12

Second step : Rename Variables

Is renaming worth the effort?

(')¢

result =
determine amount for each line
1f rental.movie.price code == Movie.REGULAR:
result +=
1f rental.days rented >
result += (rental.days rented - 2) *
elif rental.movie.price code == Movie.NEW RELEASE:
result += rental.days rented *
elif rental.movie.price code == Movie.CHILDRENS:
result +=
1f rental.days rented >
result += (rental.days rented - 3) *

return result

12

Saturday, July 14, 12

Second step : Rename Variables

Is renaming worth the effort?

(')¢

result =
determine amount for each line
1f rental.movie.price code == Movie.REGULAR:
result +=
1f rental.days rented >
result += (rental.days rented - 2) *
elif rental.movie.price code == Movie.NEW RELEASE:
result += rental.days rented *
elif rental.movie.price code == Movie.CHILDRENS:
result +=
1f rental.days rented >
result += (rental.days rented - 3) *

return result

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

Saturday, July 14, 12

Third step : Move Method

Customer () ¢
(')¢
result =
determine amount for each line
1f rental.movie.price code == Movie.REGULAR:
result +=
1f rental.days rented >
result += (rental.days rented - 2) *
elif rental.movie.price code == Movie.NEW RELEASE:
result += rental.days rented *
elif rental.movie.price code == Movie.CHILDRENS:
result +=
1f rental.days rented >
result += (rental.days rented - 3) *

return result

This method doesn’t use any data from Customer class

Saturday, July 14, 12

Third step : Move Method

Rental () s
() :
result =
determine amount for each line
1f self.movie.price code == Movie.REGULAR:
result +=
1f self.days rented > 7:
result += (self.days rented - 7) *
elif self.movie.price code == Movie.NEW RELEASE:
result += self.days rented *
elif self.movie.price code == Movie.CHILDRENS:
result +=
1f self.days rented > =:
result += (self.days rented - 3) *

return result

14

Saturday, July 14, 12

Third step : Move Method

Customer ()

(')¢

return rental.get charge()

()¢
total amount =
frequent renter points =

result = % (self.name)
for rental in self. rentals:

this amount = self.amount for(rental)

15

Saturday, July 14, 12

Third step : Move Method

v

Customer () ¢

()¢

total amount =

frequent renter points =
result = 3

5 (self.name)
for rental in self. rentals:

this amount = rental.get charge()

15

Saturday, July 14, 12

Forth step : Replace Temp with Query

() ¢
total amount =
frequent renter points =
result = % (self.name)
for rental in self. rentals:

this amount = rental.get charge()

add requent renter points
frequent renter points +=

add bonus for a two day new release rental
1f rental.movie.price code == Movie.NEW RELEASE and rental.days rented > 1:
frequent renter points +=

show figures for this rental

result += % (rental.movie.title, this_amount)
total amount += this_amount

add footer lines
result += % (total amount)
result += % (frequent renter points)

return result

16

Saturday, July 14, 12

Forth step : Replace Temp with Query

() ¢ Temps are often a problem
total amount =

frequent renter points = INn that they cause a lot of
result = % (self.name) parameters to be passed

for rental in Sei“ around when they don't
<X have to be

his amount)® rental.get charge()

add requent renter points
frequent renter points +=

add bonus for a two day new release/rental

1f rental.movie.price code == Movie/NEW RELEASE and rental.days rented > 1:
frequent renter points +=

show figures for this renta
result +=

total amount +=<£Egs_amount

\O

S (rental.movie.title,(EEE%_améEEE)

add footer lines
result += % (total amount)
result += % (frequent renter points)

return result

Saturday, July 14, 12

Forth step : Replace Temp with Query

() ¢
total amount =
frequent renter points =
result = % (self.name)
for rental in self. rentals:

add requent renter points
frequent renter points +=

add bonus for a two day new release rental
1f rental.movie.price code == Movie.NEW RELEASE and rental.days rented > 1:
frequent renter points +=

show figures for this rental
result += % (rental.movie.title, rental.get charge())

total amount += rental.get charge()

add footer lines
result += % (total amount)
result += % (frequent renter points)

return result

17

Saturday, July 14, 12

Fifth step : Extract Method

() ¢
total amount =
frequent renter points =
result = % (self.name)
for rental in self. rentals:

add requent renter points
frequent renter points +=

add bonus for a two day new release rental
1f rental.movie.price code == Movie.NEW RELEASE and rental.days rented > 1:
frequent renter points +=

show figures for this rental
result += % (rental.movie.title, rental.get charge())
total amount += rental.get charge()

add footer lines
result += % (total amount)
result += % (frequent renter points)

return result

Saturday, July 14, 12

Fifth step : Extract Method

()
total amount =
frequent renter points =
result = % (self.name)
for rental in self. rentals:
frequent renter points += rental.get frequent renter points()

show figures for this rental
result += % (rental.movie.title, rental.get charge())
total amount += rental.get charge()

add footer lines

result += % (total amount)

result += % (frequent renter points)
return result

Rental () ¢

()¢
1f self.movie.price code == Movie.NEW RELEASE and self.days rented > 1:
return
else:
return

19

Saturday, July 14, 12

Seqguence diagrams and Class diagram

aCustomer aRental aMovie
| |
statement I | |
] " [for all rentals)

PR | |
getCharge | |

= getPriceCode
getFrequentRenterPoints | |

= getPriceCode
1] n]
| |

Rental
Customer
Movie 1 daysRented: int =
= -
priceCode: int geiCharge() statement()
getFrequentRenter Points()

20

Saturday, July 14, 12

One loop, One function

()
total amount =
frequent renter points =
result = % (self.name)
for rental in self. rentals:
frequent renter points += rental.get frequent renter points()

show figures for this rental
result += % (rental.movie.title, rental.get charge())
total amount += rental.get charge()

add footer 1lines
result += % (total amount)

result += % (frequent renter points)
return result

You should make each loop perform only one function.

21

Saturday, July 14, 12

One loop, One function

() 2 how many performing functions are in this loop?

total amount =
frequent renter points = ‘/
result = 2 (self.name)
(for rental in self. rentals:)
frequent renter points += rental.get frequent renter points()
show figures for this rental
result += % (rental.movie.title, rental.get charge())
total amount += rental.get charge()
1\ J
add footer 1lines
result += % (total amount)
result += % (frequent renter points)

return result

You should make each loop perform only one function.

21

Saturday, July 14, 12

Sixth step : Replace Temp with Query

()¢
total amount =
frequent renter points =

result = % (self.name)
for rental in self. rentals:

frequent renter points += rental.get frequent renter points()

show figures for this rental
result += % (rental.movie.title, rental.get charge())

total amount += rental.get charge()

add footer lines
result += % (total_amount)

result += % (frequent renter points)
return result

22

Saturday, July 14, 12

Sixth step : Replace Temp with Query

result =

for rental in self. rentals:
result += rental.get charge()

return result

result =
for rental in self. rentals:

result += rental.get frequent renter points()
return result

result = % (self.name)

for rental in self. rentals:
show figures for this rental
result += % (rental.movie.title, rental.get charge())

add footer lines

result += % (self.get total charge())

result += 2\
(self.get total frequent renter points())

return result

23

Saturday, July 14, 12

Seqguence diagrams and Class diagram

aCustomer akental aMaovie
- | |
statement | I
getTotalCharge
-
| |
* [for all rentals] getCharge |
>t getPriceCode
.
1 | ~l
1 getTotalFrequentRenterPoints
= I | |
' I
" [For all rentals] gr::lFrm:p-:ani!cntc:rF'uiniﬁ
e
getPriceCode |
T g
Rental Customer
Movie 1 daysRented: int sk
< < statementy)
priceCode: int getCharge) _ getTotalCharge()
getFrequentRenterPoints() getTotalFrequentRenterPeints()

24

Saturday, July 14, 12

HTML Statement

()¢
result = % (self.name)
for rental in self. rentals:
show figures for this rental

result += % (rental.movie.title, rental.get charge())

add footer lines
result += % (self.get total charge())
result +=
(self.get total frequent renter points())
return result

o©°
/

statement and html_statement methods perform similar
steps in the same order, yet the steps are different.

25

Saturday, July 14, 12

Seventh step : Form Template Method

Customer +——————— z— Statement

/\

Text Statement html Statement

First, we have to create a separate strategy hierarchy for printing the statements
and move the two statement methods over to the subclasses.

Saturday, July 14, 12

Design Patterns : Strategy

e Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients
that use it.

e Structure

strate
s Y

Conlexi p Strateqgy

Contextinterface]) Algorithminterface(}

A

ConcrateStratagyA ConcreteStralegyB ConcreteStrategyC

Algarithminterfacel) Algorithminlerface() Algonthminterface!)

Saturday, July 14, 12

Seventh step : Form Template Method

Saturday, July 14, 12

Statement ()
(/)

raise

TextStatement (
(’)

result = % (customer.name)

o0 N
o0

for rental in customer.rentals:

show figures for this rental
result += 2

=

3 (rental.movie.title, rental.get charge())

add footer lines

result += % (customer.get total charge())
result +=

\

o©°

(customer.get total frequent renter points())
return result

HtmlStatement () :
(')

result =

Q

% (customer.name)
for rental in customer.rentals:

show figures for this rental
result += 2

=

5 (rental.movie.title, rental.get charge())

add footer lines
result +=
result +=

Q

% (customer.get total charge())

o®

(customer.get total frequent renter points())
return result

28

Seventh step : Form Template Method

Customer () ¢

()¢

return HtmlStatement().value(self)

()¢

return TextStatement().value(self)

Now, we can separate the varying code from the similar code by using Extract
Method to extract the pieces that are different between the two methods.

29

Saturday, July 14, 12

Seventh step : Form Template Method

Saturday, July 14, 12

TextStatement (
(')

result =

00 S
o0

)

% (customer.name)
for rental in customer.rentals:

show figures for this rental
result += %

3

¢ (rental.movie.title, rental.get charge())

add footer lines
result +=
result +=

3

5 (customer.get total charge())

%\
(customer.get total frequent renter points())
return result

HtmlStatement () :
(')

result = 2

% (customer.name)
for rental in customer.rentals:

show figures for this rental
result += 2

=

5 (rental.movie.title, rental.get charge())

add footer lines
result +=
result +=

3

5 (customer.get total charge())

o°

(customer.get total frequent renter points())
return result

30

Seventh step : Form Template Method

Saturday, July 14, 12

TextStatement (

(| header
result =(: 2

% (customer.name))

00 S
o0

for rental 1n customer.rentals:

show figures for this rental
result += %

=

5 (rental.movie.title, rental.get charge())

add footer lines
result += 2

% (customer.get total charge())
result +=

%\
(customer.get total frequent renter points())
return result

HtmlStatement () 3 header
(.) <
result =(: 3 (customer.namei)
for rental in customer.rentals:

show figures for this rental
result += 2

=

5 (rental.movie.title, rental.get charge())

add footer lines

result += % (customer.get total charge())
result +=

o°

(customer.get total frequent renter points())
return result

30

Seventh step : Form Template Method

TextStatement () ¢ header
(L) ¢
result =(: % (customer.namei)
for rental 1in customer.rentals: each rental
show fiqures for this rental

result +=(2

=

> (rental.movie.title, rental.get_charge()j}

add footer lines
result += 2

% (customer.get total charge())
result +=

%\
(customer.get total frequent renter points())
return result

HtmlStatement () 3 header
(.) s
result =(: 3 (customer.namei)
for rental in customer.rentals: each rental
show figures for this rental
result +=(: %

¢ (rental.movie.title, rental.get_charge()):)

add footer lines

result += % (customer.get total charge())
result +=

o°
/

(customer.get total frequent renter points())
return result

Saturday, July 14, 12

Seventh step : Form Template Method

TextStatement () ¢ header
(L) ¢
result =(: % (customer.namei)
for rental 1in customer.rentals: each rental
show fiqures for this rental
result += % (rental.movie.title, rental.get_charge()j}

add footer lines

% (customer.get total charge())

3\ footer

(customer.get total frequent renter points())
return result

HtmlStatement (
(.)

result =(: 3 (customer.namei)

header

0
o0

for rental in customer.rentals: eaCh rental
show figures for this rental

result +=(: % (rental.movie.title, rental.get_charge()):)

add _footer lines
resplt += % (customer.get total charge())
resplt +=

(customer.get total frequent renter points())
return result

o°
/

footer

Saturday, July 14, 12

Seventh step : Form Template Method

TextStatement (K
(’) ¢
result = self.header string(customer)
for rental in customer.rentals:
show figures for this rental
result += self.each rental string(rental)
add footer lines
result += self.footer string(customer)
return result

return % (customer.name)
(’) ¢
return % (rental.movie.title, rental.get charge())
(’) ¢
return % (customer.get total charge()) + \
2\

(customer.get total frequent renter points())

31

Saturday, July 14, 12

Seventh step : Form Template Method

HtmlStatement () ¢
(’) ¢
result = self.header string(customer)
for rental in customer.rentals:
show figures for this rental
result += self.each rental string(rental)
add footer lines
result += self.footer string(customer)
return result

return % (customer.name)
(’) ¢
return % (rental.movie.title, rental.get charge())
(’) ¢
return % (customer.get total charge()) + \

o©

(customer.get total frequent renter points())

\

32

Saturday, July 14, 12

Seventh step : Form Template Method

Statement (K

(')

result = self.header string(customer)
for rental in customer.rentals:

show figures for this rental

result += self.each rental string(rental)
add footer 1lines
result += self.footer string(customer)
return result

raise

raise

Finally, pull the value method from two
subclasses to their super class

Saturday, July 14, 12

Another Ugly Code

()¢

result =
determine amount for each line
1f self.movie.price code == Movie.REGULAR:
result +=
1f self.days rented >
result += (self.days rented - 2) *
elif self.movie.price code == Movie.NEW RELEASE:
result += self.days rented *
elif self.movie.price code == Movie.CHILDRENS:
result +=
1f self.days rented >
result += (self.days rented - 2) *

return result

What are the problems of this code”

Saturday, July 14, 12

Another Ugly Code

e |t is a bad idea to do a switch based on an attribute of another object. If you
must use a switch statement, it should be on your own data, not on someone
else's.

e Keeping getCharge in the Movie class has the least ripple effect from
adding new movie types or editing the existing ones.

35

Saturday, July 14, 12

—ighth step : Move Method

Movie ()2
('):
result =
1f self.price code == Movie.REGULAR:
result +=
1f days_rented >
result += (days rented - 2) *
elif self.price code == Movie.NEW RELEASE:
result += days rented *
elif self.price code == Movie.CHILDRENS:
result +=
1f days_rented >
result += (days rented - 3) *

return result

(')¢
1f self.price code == Movie.NEW RELEASE and days rented > 1:
return
else:

return

Rental () s

():

return self.movie.get charge(self.days rented)

()
return self.movie.get frequent renter points(self.days rented) 36

Saturday, July 14, 12

This code still be ugly (why?)

This code performs 3 tasks depending on the type of the movie.

(') ¢

result =
determine amount for each line
1f self.price code == Movie.REGULAR:
result +=
1f days rented >
result += (days rented - 2) *
elif self.price code == Movie.NEW_ RELEASE:
result += days rented *
elif self.price code == Movie.CHILDRENS:
result +=
1f days rented >
result += (days rented - 3) *

return result

37

Saturday, July 14, 12

Can we have subclasses of movie”?

Movie

getCharge

/\

Regular Movie

Childrens Movie

New Release Movie

getCharge

getCharge

getCharge

What happens if the movie type is changed?

Because an object cannot change its class during its lifetime.

38

Saturday, July 14, 12

Design Patterns : State

e Allow an object to alter its behavior when its internal state changes.The
object will appear to change its class.

e Structure

Context .;;f' late p Slate
Request() O Handle{}
|
5 AN
state-=Handla{)
ConcreteStateA ConcreteStateB

Handlel) Handie{)

Saturday, July 14, 12

What is the different between State and Strategy?

e http://www.c-sharpcorner.com/UploadFile/rmcochran/
strategy state01172007114905AM/strategy state.aspx

e http://stackoverflow.com/questions/1658192/what-is-the-difference-
between-strategy-design-pattern-and-state-design-pattern

40

Saturday, July 14, 12

http://www.c-sharpcorner.com/UploadFile/rmcochran/strategy_state01172007114905AM/strategy_state.aspx
http://www.c-sharpcorner.com/UploadFile/rmcochran/strategy_state01172007114905AM/strategy_state.aspx
http://www.c-sharpcorner.com/UploadFile/rmcochran/strategy_state01172007114905AM/strategy_state.aspx
http://www.c-sharpcorner.com/UploadFile/rmcochran/strategy_state01172007114905AM/strategy_state.aspx
http://stackoverflow.com/questions/1658192/what-is-the-difference-between-strategy-design-pattern-and-state-design-pattern
http://stackoverflow.com/questions/1658192/what-is-the-difference-between-strategy-design-pattern-and-state-design-pattern
http://stackoverflow.com/questions/1658192/what-is-the-difference-between-strategy-design-pattern-and-state-design-pattern
http://stackoverflow.com/questions/1658192/what-is-the-difference-between-strategy-design-pattern-and-state-design-pattern

Using the State pattern on movie

Movie ‘ Price
getCharge 11 getCiharge
f

ff /\

)
d

return price_getCharge
Regular Price Childrens Price New Release Price
getCharge gelCharge getCharge

41

Saturday, July 14, 12

Ninth step : Replace Type Code with State

e Self Encapsulate Field

e Movie Method

e Replace Conditional with Polymorphism

42

Saturday, July 14, 12

Self

—ncapsulate Field

Price(K
()
raise
ChildrensPrice() 2

()
return Movie.CHILDRENS

RegularPrice() 2

()
return Movie.REGULAR

NewReleasePrice () ¢

() ¢
return Movie.NEW RELEASE

43

Saturday, July 14, 12

Move Method

Price() ¢
(') 3
result =
determine amount for each line
1f self.get price code() == Movie.REGULAR:
result +=
1f days rented >
result += (days rented - 2) *
elif self.get price code() == Movie.NEW RELEASE:
result += days rented *
elif self.get price code() == Movie.CHILDRENS:
result +=
1f days rented >
result += (days rented - 3) *

return result

(’) 3
1f self.get price code() ==

return
else:

return

Movie.NEW RELEASE and days rented >

44

Saturday, July 14, 12

Move Method

Movie ()

()¢

return self. price

(’) ¢

self. price = price

()¢

return self. price.get price code()

(’)

1f price code == Movie.REGULAR:
self.price = RegularPrice()

elif price code == Movie.NEW RELEASE:
self.price = NewReleasePrice()

elif price code == Movie.CHILDRENS:

self.price = ChildrensPrice()

(’)

return self.price.get charge(days rented)

(’)¢

return self.price.get frequent renter points(days rented)

45

Saturday, July 14, 12

Replace Conditional with Polymorphism

Price() ¢
(') 3
result =
determine amount for each line
1f self.get price code() == Movie.REGULAR:
result +=
1f days rented >
result += (days rented - 27) *
elif self.get price code() == Movie.NEW RELEASE:
(result += days rented *
elif self.get price code() == Movie.CHILDRENS:
result +-=
1f days rented >
result += (days rented - 3) *

return result

(')¢
1f self.get price code() == Movie.NEW RELEASE and days rented >

(return)

else:

(return)

Saturday, July 14, 12

Replace Conditional with Polymorphism

Price() ¢
(') 3
result =
determine amount for each line
1f self.get price code() == Movie.REGULAR:
result += ey
if days_rented > 2: :RegularPrice:
result += (days rented - 2) * 1.5)
elif self.get price code() == Movie.NEW RELEASE:
(result += days rented *
elif self.get price code() == Movie.CHILDRENS:
result +=
1f days rented >
result += (days rented - 3) *

return result

(')¢
1f self.get price code() == Movie.NEW RELEASE and days rented >

(return)

else:

(return)

Saturday, July 14, 12

Replace Conditional with Polymorphism

Price() ¢
(') 3
result =
determine amount for each line
1f self.get price code() == Movie.REGULAR:
result += oy
if days_rented > 2: :RegularPrice:
result += (days rented - 2) * 1.5)
elif self.get price code() == Movie.NEW RELEASE-: . :
(result += days_rented *) {NewReleasePrice!
elif self.get _price code() —= Movie.CHILDRENS ¢ s
result +-=
1f days rented >
result += (days rented - 3) *

return result

(')¢
1f self.get price code() == Movie.NEW RELEASE and days rented >

(return)

else:

(return)

Saturday, July 14, 12

Replace Conditional with Polymorphism

Price() ¢
(’) :
result =
determine amount for each line
1f self.get price code() == Movie.REGULAR:
result += rorrinn sy
if days_rented > 2: :RegularPrice:
result += (days rented - 2) * 1.5 J
elif self.get price code() == Movie.NEW RELEASE:...... :
Cresult += days_rented *) ENeWReIeasePriceé
elif self.get _price code() —= Movie.CHILDRENS e
result +-= et :
if days_rented > 3: : ChildrensPrice :
result += (days rented - 3) * oresnsessss s

return result

(')¢
1f self.get price code() == Movie.NEW RELEASE and days rented >

(return)

else:

(return)

46

Saturday, July 14, 12

Price() ¢
(/) ¢
result =
determine amount for each line
1if self.get price code() == Movie.REGULAR:

result +=
1f days rented >
result += (days rented - 27) *

Replace Conditional with Polymorphism

elif self.get price code() == Movie.NEW RELEASE-: . :
(result += days_rented * . NewReleasePrice |
elif self.get price code() == MovVie.CHILDRENS e

result +-=
1f days rented >
result += (days rented - 3) *
return result

('

1if self.get price code() =

(return)

else:

(return)

Movie.NEW RELEASE--and.-days.-rented >
. NewReleasePrice!

46

Saturday, July 14, 12

Replace Conditional with Polymorphism

Price() ¢

(/) ¢
result =
determine amount for each line

if self.get price code() == Movie.REGULAR:

result += oo s
if days_rented > 2: :RegularPrice:
result += (days rented - 2) * 1.5)
elif self.get price code() == Movie.NEW RELEASE:...... :
Cresult += days_rented *) ENeWReIeasePriceé
elif Self.get price code() == Movie.CHILDRENS e
result += eeeea et :
if days_rented > 3: . ChildrensPrice !
result += (days rented - 3) * e

return result

(’) :
if self.get price code() == Movie.NEW RELEASE.-and.-days.-rented >
(return) iNewReleasePrice !
else: s
(zeturn) {Price!

46

Saturday, July 14, 12

Replace Conditional with Polymorphism

Price() 2
(’)
raise
(')
return
ChildrensPrice() :
(’) :
return +(days_rented-3)* 1f days rented > else
RegularPrice() :
(')
return +(days _rented-2)* 1f days rented > else
NewReleasePrice) 2
(') 3
return 1f days_rented > else

(')¢

return days_ rented *

47

Saturday, July 14, 12

Class Diagram

Movie Price
title: string ;
get_charge(days: int getCharge(days: int)
- ' . . et_frequent_renter_points:(days: int
get_frequent_renter_points(days: int) 1 9ELITeq B -P (day)
JAN
1
ChildrensPrice NewReleasePrice ReqularPrice
get_charge(days: int) get_charge(days: int) get_charge(days: int)
get_frequent_renter_points(days: int)
Customer
Rental)
: name: string Statement
days rented: int
get_charge(statement() value(customer: Customer)
get_frequent_renter_points() html_statement() header_string(customer: Customer)
- - - get_total_charge() _ 1" | each_rental_string(rental: Renter)
get_total_frequent_renter_points() footer_string(customer: Customer)

HtmlStatement TextStatement
header_string(customer: Customer) header_string(customer: Customer)
each_rental_string(rental: Renter) each_rental_string(rental: Renter)
footer_string(customer: Customer) footer_string(customer: Customer)

Saturday, July 14, 12

Sequence Diagram

aCustomer aStatement aRental aMovie aPrice

| |
statemeng | |

value(aCustomer) '

|

|

|

|

|
header_string(aCustomelh

|
|
|
|

*[for all aCystomer.rentals| each_ren‘tal_string(rental)

get charge(days)

get charge(days)

[

|

|

|

) |
footer_string(aCustomer))

|
|
get total charge |
|
|

* [for all rentdlg] det_charge

get charge(days)

get _charge(days)

get total frequent renter_poinits

* [for all rentals] get frequent renter _points

NN _________

get_frequent_renter_points(days)
| get_frequent_renter points}l(tlays)
|

| I I

Saturday, July 14, 12

2rinciples in Refactoring

Saturday, July 14, 12

The Two Hats

e \When you use refactoring to develop software, you divide your time between
two distinct activities:

e adding function

e \When you add function, you shouldn't be changing existing code; you
are just adding new capabilities.

e refactoring

e \When you refactor, you make a point of not adding function; you only
restructure the code.

Saturday, July 14, 12

Why Should You Refactor?

e Improves the design of software

e makes software easier to understand

* helps you find bugs

® helps you program faster

Saturday, July 14, 12

When Should You Refactor? ; The Rule of Three

e Refactor when you add function
e if you have a hard time to add a new function, you need refactoring
e Refactor when you need to fix a bug

e if you do get a bug report, you need refactoring because the was not clear
enough for you to see there were a bug

e Refactor as you do a code review

e refactoring also helps the code review have more concrete rseults

Saturday, July 14, 12

When Shouldn’t You Refactor?

e \When you should rewrite from scratch instead

e \When you closed to a deadline

e unfinished refactoring as going into debt

Saturday, July 14, 12

