
Exceptions

Testing

Exceptions

Copyright © Software Carpentry 2010

This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

Things go wrong

Testing Exceptions

Things go wrong

External

Testing Exceptions

Things go wrong

External

– Missing or badly-formatted file– Missing or badly-formatted file

Testing Exceptions

Things go wrong

External

– Missing or badly-formatted file– Missing or badly-formatted file

Internal

Testing Exceptions

Things go wrong

External

– Missing or badly-formatted file– Missing or badly-formatted file

Internal

– Bug in code

Testing Exceptions

Things go wrong

External

– Missing or badly-formatted file– Missing or badly-formatted file

Internal

– Bug in code

Testing Exceptions

Things go wrong

External

– Missing or badly-formatted file– Missing or badly-formatted file

Internal

– Bug in code

Handling errors sensibly is easy

Testing Exceptions

Option #1: return status code

Testing Exceptions

Option #1: return status code

params, status = read_params(param_file)

ifififif status != OK:ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

Testing Exceptions

log.error('Failed to read', grid_file)

sys.exit(ERROR)

Option #1: return status code

params, status = read_params(param_file)

ifififif status != OK:ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

Testing Exceptions

This is what we really care about

log.error('Failed to read', grid_file)

sys.exit(ERROR)

Option #1: return status code

params, status = read_params(param_file)

ifififif status != OK:ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

Testing Exceptions

The rest is error handling

log.error('Failed to read', grid_file)

sys.exit(ERROR)

Hard to see the forest for the trees

Testing Exceptions

Hard to see the forest for the trees

ExpectedExpected

flow of control

Testing Exceptions

Hard to see the forest for the trees

Expected ErrorExpected

flow of control

Error

handling

Testing Exceptions

Hard to see the forest for the trees

Expected ErrorExpected

flow of control

Error

handling

So people don't even try to handle errors

Testing Exceptions

Hard to see the forest for the trees

Expected ErrorExpected

flow of control

Error

handling

So people don't even try to handle errors

Which makes them harder to find and fix when

Testing Exceptions

they do occur

Option #2: use exceptions

Testing Exceptions

Option #2: use exceptions

Separate "normal" operation from code that

handles "exceptional" caseshandles "exceptional" cases

Testing Exceptions

Option #2: use exceptions

Separate "normal" operation from code that

handles "exceptional" caseshandles "exceptional" cases

Make both easier to understand

Testing Exceptions

Rearrange this...

params, status = read_params(param_file)params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

Testing Exceptions

log.error('Failed to read', grid_file)

sys.exit(ERROR)

...to put "normal" code in one place...

params, status = read_params(param_file)params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

params = read_params(param_file)

grid = read_grid(grid_file)

Testing Exceptions

log.error('Failed to read', grid_file)

sys.exit(ERROR)

...and error handling code in another

params, status = read_params(param_file)params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

params = read_params(param_file)

grid = read_grid(grid_file)

log.error('Failed to read',

filename)

sys.exit(ERROR)

Testing Exceptions

log.error('Failed to read', grid_file)

sys.exit(ERROR)

...and error handling code in another

params, status = read_params(param_file)params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

params = read_params(param_file)

grid = read_grid(grid_file)

log.error('Failed to read',

filename)

sys.exit(ERROR)

Testing Exceptions

log.error('Failed to read', grid_file)

sys.exit(ERROR)

Only need one copy of the error handling code

Join the two parts with try and except

params, status = read_params(param_file) trytrytrytry:params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

exceptexceptexceptexcept:

log.error('Failed to read',

filename)

sys.exit(ERROR)

Testing Exceptions

log.error('Failed to read', grid_file)

sys.exit(ERROR)

You have seen exceptions before

Testing Exceptions

You have seen exceptions before

>>> open('nonexistent.txt', 'r')

IOError: No such file or directory: 'nonexistent.txt'IOError: No such file or directory: 'nonexistent.txt'

Testing Exceptions

You have seen exceptions before

>>> open('nonexistent.txt', 'r')

IOError: No such file or directory: 'nonexistent.txt'IOError: No such file or directory: 'nonexistent.txt'

>>> values = [0, 1, 2]

>>> values[99]

IndexError: list index out of range

Testing Exceptions

Use try and except to deal with them yourself

Testing Exceptions

Use try and except to deal with them yourself

>>> trytrytrytry:

... reader = open('nonexistent.txt', 'r')... reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

... print 'Whoops!'

Whoops!

Testing Exceptions

Use try and except to deal with them yourself

>>> trytrytrytry:

... reader = open('nonexistent.txt', 'r')... reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

... print 'Whoops!'

Whoops! Blue indicates regular output

Testing Exceptions

Use try and except to deal with them yourself

>>> trytrytrytry:

... reader = open('nonexistent.txt', 'r')... reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

... print 'Whoops!'

Whoops! Try to do this...

Testing Exceptions

Use try and except to deal with them yourself

>>> trytrytrytry:

... reader = open('nonexistent.txt', 'r')... reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

... print 'Whoops!'

Whoops! ...and do this if

an IO error occurs

Testing Exceptions

an IO error occurs

Use try and except to deal with them yourself

>>> trytrytrytry:

... reader = open('nonexistent.txt', 'r')

...and do this if

an IO error occurs

... reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

... print 'Whoops!'

Whoops!

Testing Exceptions

an IO error occurs

'IOError' is how Python

reports 'file not found'

Can put many lines of code in a try block

Testing Exceptions

Can put many lines of code in a try block

And handle several errors afterward

Testing Exceptions

Can put many lines of code in a try block

And handle several errors afterward

trytrytrytry:trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError:

Testing Exceptions

log_error_and_exit('IO error')

exceptexceptexceptexcept ArithmeticError:

log_error_and_exit('Arithmetic error')

trytrytrytry:

Can put many lines of code in a try block

And handle several errors afterward

Try to do this

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError:

Testing Exceptions

log_error_and_exit('IO error')

exceptexceptexceptexcept ArithmeticError:

log_error_and_exit('Arithmetic error')

trytrytrytry:

Can put many lines of code in a try block

And handle several errors afterward

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError:
Handle I/O

Testing Exceptions

log_error_and_exit('IO error')

exceptexceptexceptexcept ArithmeticError:

log_error_and_exit('Arithmetic error')

Handle I/O

errors here

trytrytrytry:

Can put many lines of code in a try block

And handle several errors afterward

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError:
and numerical

Testing Exceptions

log_error_and_exit('IO error')

exceptexceptexceptexcept ArithmeticError:

log_error_and_exit('Arithmetic error')

and numerical

errors here

trytrytrytry:
These messages

Can put many lines of code in a try block

And handle several errors afterward

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError:

These messages

aren't very helpful

Testing Exceptions

log_error_and_exit('IO error')

exceptexceptexceptexcept ArithmeticError:

log_error_and_exit('Arithmetic error')

Python 2.6

trytrytrytry:trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception, error:

printprintprintprint error

Testing Exceptions

Python 2.6

trytrytrytry:trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception, error:

printprintprintprint error

Stores information about what went wrong

Testing Exceptions

Stores information about what went wrong

Python 2.6

trytrytrytry:trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception, error:

printprintprintprint error

Stores information about what went wrong

Testing Exceptions

Stores information about what went wrong

Different information for different kinds of errors

Python 2.6

trytrytrytry:

Python 2.7

trytrytrytry:trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception, error:

printprintprintprint error

trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception asasasas error:

printprintprintprint error

More readable

Testing Exceptions

More readable

Better error messages

Testing Exceptions

trytrytrytry:

Better error messages

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

Testing Exceptions

log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)

trytrytrytry:

Better error messages

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

Testing Exceptions

log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)

trytrytrytry:

Better error messages

Help user figure out

which filetrytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

which file

Testing Exceptions

log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)

trytrytrytry:

Better error messages

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

No worse than

the default

Testing Exceptions

log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)

A question of style

Testing Exceptions

A question of style

trytrytrytry:trytrytrytry:

grid = read_grid(grid_file)

exceptexceptexceptexcept IOError:

grid = default_grid()

Testing Exceptions

A question of style

ifififif file_exists(grid_file):trytrytrytry: ifififif file_exists(grid_file):

grid = read_grid(grid_file)

elseelseelseelse:

grid = default_grid()

trytrytrytry:

grid = read_grid(grid_file)

exceptexceptexceptexcept IOError:

grid = default_grid()

Testing Exceptions

trytrytrytry:

A question of style

ifififif file_exists(grid_file):trytrytrytry:

grid = read_grid(grid_file)

exceptexceptexceptexcept IOError:

grid = default_grid()

ifififif file_exists(grid_file):

grid = read_grid(grid_file)

elseelseelseelse:

grid = default_grid()

Testing Exceptions

Use exceptions for exceptional cases

Another question of style

Testing Exceptions

Another question of style

But first...

Testing Exceptions

Exceptions can be thrown a long way

Testing Exceptions

trytrytrytry:

Exceptions can be thrown a long way

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

Testing Exceptions

log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)

trytrytrytry:

Exceptions can be thrown a long way

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

These are

function calls

Testing Exceptions

log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)

Exceptions can be thrown a long way

trytrytrytry:

Any errors

they don't

catch...

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

Testing Exceptions

log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)

Exceptions can be thrown a long way

trytrytrytry:trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

...are caught

and handled

here

Testing Exceptions

log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)

"Throw low, catch high"

Testing Exceptions

"Throw low, catch high"

Many places where errors might occur

Testing Exceptions

"Throw low, catch high"

Many places where errors might occur

Only a few where they can sensibly be handledOnly a few where they can sensibly be handled

Testing Exceptions

"Throw low, catch high"

Many places where errors might occur

Only a few where they can sensibly be handledOnly a few where they can sensibly be handled

A linear algebra library doesn't know how its

callers will want to report errors...

Testing Exceptions

"Throw low, catch high"

Many places where errors might occur

Only a few where they can sensibly be handledOnly a few where they can sensibly be handled

A linear algebra library doesn't know how its

callers will want to report errors...

...so it shouldn't try to handle them itself

Testing Exceptions

You can raise exceptions yourself

Testing Exceptions

You can raise exceptions yourself

should

Testing Exceptions

You can raise exceptions yourself

should

defdefdefdef read_grid(grid_file):defdefdefdef read_grid(grid_file):

'''Read grid, checking consistency.'''

data = read_raw_data(grid_file)

ifififif notnotnotnot grid_consistent(data):

raiseraiseraiseraise Exception('Inconsistent grid: ' + grid_file)

Testing Exceptions

result = normalize_grid(data)

returnreturnreturnreturn result

You can raise exceptions yourself

should

defdefdefdef read_grid(grid_file):defdefdefdef read_grid(grid_file):

'''Read grid, checking consistency.'''

data = read_raw_data(grid_file)

ifififif notnotnotnot grid_consistent(data):

raiseraiseraiseraise Exception('Inconsistent grid: ' + grid_file)

Testing Exceptions

result = normalize_grid(data)

returnreturnreturnreturn result

You can define new types of exceptions too

Testing Exceptions

You can define new types of exceptions too

should

Testing Exceptions

You can define new types of exceptions too

should

Need to understand classes and objects firstNeed to understand classes and objects first

Testing Exceptions

July 2010

created by

Greg Wilson

July 2010

Copyright © Software Carpentry 2010

This work is licensed under the Creative Commons Attribution License

See http://software-carpentry.org/license.html for more information.

