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Things go wrong

External

– Missing or badly-formatted file– Missing or badly-formatted file

Internal

– Bug in code

Handling errors sensibly is easy
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Option #1: return status code

params, status = read_params(param_file)

ifififif status != OK:ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:
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Option #1: return status code

params, status = read_params(param_file)

ifififif status != OK:ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:
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This is what we really care about

log.error('Failed to read', grid_file)

sys.exit(ERROR)



Option #1: return status code

params, status = read_params(param_file)

ifififif status != OK:ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

Testing Exceptions

The rest is error handling

log.error('Failed to read', grid_file)

sys.exit(ERROR)
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Hard to see the forest for the trees

Expected ErrorExpected

flow of control

Error

handling

So people don't even try to handle errors

Which makes them harder to find and fix when
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Option #2: use exceptions

Separate "normal" operation from code that

handles "exceptional" caseshandles "exceptional" cases

Make both easier to understand
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Rearrange this...

params, status = read_params(param_file)params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)
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log.error('Failed to read', grid_file)

sys.exit(ERROR)



...to put "normal" code in one place...

params, status = read_params(param_file)params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

params = read_params(param_file)

grid = read_grid(grid_file)
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log.error('Failed to read', grid_file)

sys.exit(ERROR)



...and error handling code in another

params, status = read_params(param_file)params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

params = read_params(param_file)

grid = read_grid(grid_file)

log.error('Failed to read',

filename)

sys.exit(ERROR)
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...and error handling code in another

params, status = read_params(param_file)params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

params = read_params(param_file)

grid = read_grid(grid_file)

log.error('Failed to read',

filename)

sys.exit(ERROR)
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log.error('Failed to read', grid_file)

sys.exit(ERROR)

Only need one copy of the error handling code



Join the two parts with try and except

params, status = read_params(param_file) trytrytrytry:params, status = read_params(param_file)

ifififif status != OK:

log.error('Failed to read', param_file)

sys.exit(ERROR)

grid, status = read_grid(grid_file)

ifififif status != OK:

log.error('Failed to read', grid_file)

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

exceptexceptexceptexcept:

log.error('Failed to read',

filename)

sys.exit(ERROR)
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log.error('Failed to read', grid_file)

sys.exit(ERROR)
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You have seen exceptions before

>>> open('nonexistent.txt', 'r')

IOError: No such file or directory: 'nonexistent.txt'IOError: No such file or directory: 'nonexistent.txt'
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You have seen exceptions before

>>> open('nonexistent.txt', 'r')

IOError: No such file or directory: 'nonexistent.txt'IOError: No such file or directory: 'nonexistent.txt'

>>> values = [0, 1, 2]

>>> values[99]

IndexError: list index out of range
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Use try and except to deal with them yourself

>>> trytrytrytry:

...   reader = open('nonexistent.txt', 'r')...   reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

...   print 'Whoops!'

Whoops!
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Use try and except to deal with them yourself

>>> trytrytrytry:

...   reader = open('nonexistent.txt', 'r')...   reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

...   print 'Whoops!'

Whoops! Blue indicates regular output
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Use try and except to deal with them yourself

>>> trytrytrytry:

...   reader = open('nonexistent.txt', 'r')...   reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

...   print 'Whoops!'

Whoops! Try to do this...

Testing Exceptions



Use try and except to deal with them yourself

>>> trytrytrytry:

...   reader = open('nonexistent.txt', 'r')...   reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

...   print 'Whoops!'

Whoops! ...and do this if

an IO error occurs
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Use try and except to deal with them yourself

>>> trytrytrytry:

...   reader = open('nonexistent.txt', 'r')

...and do this if

an IO error occurs

...   reader = open('nonexistent.txt', 'r')

... exceptexceptexceptexcept IOError:

...   print 'Whoops!'

Whoops!
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an IO error occurs

'IOError' is how Python

reports 'file not found'
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Can put many lines of code in a try block

And handle several errors afterward

trytrytrytry:trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError:
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log_error_and_exit('Arithmetic error')
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trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)
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exceptexceptexceptexcept IOError:
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trytrytrytry:

Can put many lines of code in a try block

And handle several errors afterward

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError:
and numerical
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log_error_and_exit('IO error')

exceptexceptexceptexcept ArithmeticError:

log_error_and_exit('Arithmetic error')

and numerical

errors here



trytrytrytry:
These messages

Can put many lines of code in a try block

And handle several errors afterward

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError:

These messages

aren't very helpful
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log_error_and_exit('IO error')

exceptexceptexceptexcept ArithmeticError:

log_error_and_exit('Arithmetic error')



Python 2.6

trytrytrytry:trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception, error:

printprintprintprint error
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trytrytrytry:trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception, error:

printprintprintprint error
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Testing Exceptions

Stores information about what went wrong



Python 2.6

trytrytrytry:trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception, error:

printprintprintprint error

Stores information about what went wrong
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Stores information about what went wrong

Different information for different kinds of errors



Python 2.6

trytrytrytry:

Python 2.7

trytrytrytry:trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception, error:

printprintprintprint error

trytrytrytry:

x = 1/0

exceptexceptexceptexcept Exception asasasas error:

printprintprintprint error

More readable

Testing Exceptions

More readable



Better error messages

Testing Exceptions



trytrytrytry:

Better error messages

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:
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log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)



trytrytrytry:

Better error messages

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:
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trytrytrytry:

Better error messages

Help user figure out

which filetrytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

which file

Testing Exceptions
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log_error_and_exit(err.message)



trytrytrytry:

Better error messages

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

No worse than

the default
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log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)
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A question of style

trytrytrytry:trytrytrytry:

grid = read_grid(grid_file)

exceptexceptexceptexcept IOError:

grid = default_grid()
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A question of style

ifififif file_exists(grid_file):trytrytrytry: ifififif file_exists(grid_file):

grid = read_grid(grid_file)

elseelseelseelse:

grid = default_grid()

trytrytrytry:

grid = read_grid(grid_file)

exceptexceptexceptexcept IOError:

grid = default_grid()
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trytrytrytry:

A question of style

ifififif file_exists(grid_file):trytrytrytry:

grid = read_grid(grid_file)

exceptexceptexceptexcept IOError:

grid = default_grid()

ifififif file_exists(grid_file):

grid = read_grid(grid_file)

elseelseelseelse:

grid = default_grid()

Testing Exceptions

Use exceptions for exceptional cases
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Another question of style

But first...
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trytrytrytry:

Exceptions can be thrown a long way

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:
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trytrytrytry:

Exceptions can be thrown a long way

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

These are

function calls
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log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)



Exceptions can be thrown a long way

trytrytrytry:

Any errors

they don't

catch...

trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:
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exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)



Exceptions can be thrown a long way

trytrytrytry:trytrytrytry:

params = read_params(param_file)

grid = read_grid(grid_file)

entropy = lee_entropy(params, grid)

write_entropy(entropy_file, entropy)

exceptexceptexceptexcept IOError asasasas err:

...are caught

and handled

here
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log_error_and_exit('Cannot read/write' + err.filename)

exceptexceptexceptexcept ArithmeticError asasasas err:

log_error_and_exit(err.message)
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callers will want to report errors...
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"Throw low, catch high"

Many places where errors might occur

Only a few where they can sensibly be handledOnly a few where they can sensibly be handled

A linear algebra library doesn't know how its

callers will want to report errors...

...so it shouldn't try to handle them itself
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You can raise exceptions yourself

should

defdefdefdef read_grid(grid_file):defdefdefdef read_grid(grid_file):

'''Read grid, checking consistency.'''

data = read_raw_data(grid_file)

ifififif notnotnotnot grid_consistent(data):

raiseraiseraiseraise Exception('Inconsistent grid: ' + grid_file)

Testing Exceptions

result = normalize_grid(data)

returnreturnreturnreturn result



You can raise exceptions yourself

should

defdefdefdef read_grid(grid_file):defdefdefdef read_grid(grid_file):

'''Read grid, checking consistency.'''

data = read_raw_data(grid_file)

ifififif notnotnotnot grid_consistent(data):

raiseraiseraiseraise Exception('Inconsistent grid: ' + grid_file)
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result = normalize_grid(data)

returnreturnreturnreturn result
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You can define new types of exceptions too

should
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You can define new types of exceptions too

should

Need to understand classes and objects firstNeed to understand classes and objects first
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