ผลต่างระหว่างรุ่นของ "01204472 ภาคต้น 2555"
ไปยังการนำทาง
ไปยังการค้นหา
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) |
||
แถว 15: | แถว 15: | ||
* การหาค่าที่ดีที่สุด | * การหาค่าที่ดีที่สุด | ||
** Machine learning / AI: ใช้ในการเทรนเครื่องจักรการเรียนรู้ เช่น [http://en.wikipedia.org/wiki/Artificial_neural_network neural networks] หรือ [http://en.wikipedia.org/wiki/Support_vector_machine Support vector machine] | ** Machine learning / AI: ใช้ในการเทรนเครื่องจักรการเรียนรู้ เช่น [http://en.wikipedia.org/wiki/Artificial_neural_network neural networks] หรือ [http://en.wikipedia.org/wiki/Support_vector_machine Support vector machine] | ||
− | ** Computer graphics: การประยุกต์ใช้การหาค่าที่ดีที่สุดในปัญหาต่าง ๆ ดูตัวอย่างจากรายวิชาต่อไปนี้: [http://www.cs.cmu.edu/~jkh/gnhm_08/ Generating Natural Human Motion] [http://graphics.cs.cmu.edu/nsp/course/15-869/index.html Physically Based Character Animation] | + | ** Computer graphics: การประยุกต์ใช้การหาค่าที่ดีที่สุดในปัญหาต่าง ๆ ดูตัวอย่างจากรายวิชาต่อไปนี้: [http://www.cs.cmu.edu/~jkh/gnhm_08/ Generating Natural Human Motion] [http://graphics.cs.cmu.edu/nsp/course/15-869/index.html Physically Based Character Animation] หรือเรื่องของ [http://www.eng.utah.edu/~cs6967/ optimization based synthesis] |
** หุ่นยนต์ | ** หุ่นยนต์ | ||
** เครือข่ายคอมพิวเตอร์ | ** เครือข่ายคอมพิวเตอร์ |
รุ่นแก้ไขเมื่อ 16:27, 23 พฤษภาคม 2555
การคำนวณเชิงตัวเลข เป็นหนึ่งในการประยุกต์ใช้งานหลักของคอมพิวเตอร์ การคำนวณเชิงตัวเลขมีขอบเขตในการประยุกต์ใช้ที่กว้างขวาง (ดูรายการด้านล่าง) ในวิชานี้ เราจะศึกษาทฤษฎีและอัลกอริทึมเกี่ยวกับเวกเตอร์และเมตริกซ์ ซึ่งนอกจากจะเป็นพื้นฐานในการทำความเข้าใจเทคนิคต่าง ๆ เกี่ยวกับการคำนวณเชิงตัวเลขแล้ว เนื้อหาในส่วนนี้ยังเกี่ยวข้องโดยตรงกับการประยุกต์ใช้งานในด้านต่าง ๆ รวมทั้งอัลกอริทึมสำหรับการหาค่าที่ดีที่สุดซึ่งเราจะได้ศึกษาทฤษฎีและอัลกอริทึมในวิชานี้
นอกจากนี้เรายังจะสัมผัสเนื้อหามาตรฐานของรายวิชาการคำนวณเชิงตัวเลข เช่น การหาค่าประมาณการ การหาอนุพันธ์ การอินทิเกรตเชิงตัวเลข การเข้าสมการอนุพันธ์ และการปรับหาเส้นโค้งที่เหมาะสม
ในหัวข้อต่าง ๆ เราจะศึกษาทั้งทฤษฎีและการนำไปประยุกต์ใช้
การวัดผล
- การบ้าน 20%
- สอบกลางภาค 20% สอบปลายภาค 20%
- โครงงานเล็ก 2 โครงงาน โครงงานละ 20%
รายการการประยุกต์ใช้
- ทฤษฎีเมตริกซ์
- Machine learning / AI: ใช้เพื่อโมเดลเอกสารและแสดงความสัมพันธ์ระหว่างเอกสาร (Vector space model), เทคนิคที่เกี่ยวข้องกับ eigenvalue เช่น SVD และ PCA, Collaborative filtering
- การหาค่าที่ดีที่สุด
- Machine learning / AI: ใช้ในการเทรนเครื่องจักรการเรียนรู้ เช่น neural networks หรือ Support vector machine
- Computer graphics: การประยุกต์ใช้การหาค่าที่ดีที่สุดในปัญหาต่าง ๆ ดูตัวอย่างจากรายวิชาต่อไปนี้: Generating Natural Human Motion Physically Based Character Animation หรือเรื่องของ optimization based synthesis
- หุ่นยนต์
- เครือข่ายคอมพิวเตอร์