ผลต่างระหว่างรุ่นของ "Probstat/week4 practice 2"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 22: แถว 22:
 
For <math>1\leq i\leq n</math>, define a random variable ''X<sub>i</sub>'' to be 1 if the ''i''-th experiment is successful and 0 otherwise.
 
For <math>1\leq i\leq n</math>, define a random variable ''X<sub>i</sub>'' to be 1 if the ''i''-th experiment is successful and 0 otherwise.
  
1. Find <math>{\mathrm E}[X_i^2]</math>.
+
1. Find <math>\mathrm{E}[X_i^2]</math>.
  
2. Find <math>{\mathrm E}[X_i\cdot X_j]</math>.
+
2. Find <math>\mathrm{E}[X_i\cdot X_j]</math>.
  
 
3. From the definition, we have that <math>X=\sum_{i=1}^n X_i</math>.  Rewrite <math>X^2</math> in terms of <math>X_i^2</math> and <math>X_i\cdot X_j</math>.
 
3. From the definition, we have that <math>X=\sum_{i=1}^n X_i</math>.  Rewrite <math>X^2</math> in terms of <math>X_i^2</math> and <math>X_i\cdot X_j</math>.
  
4. Use the expansion in (3) to find <math>{\mathrm E}[X^2]</math> and <math>{\mathrm Var}(X)</math>.
+
4. Use the expansion in (3) to find <math>\mathrm{E}[X^2]</math> and <math>\mathrm{Var}(X)</math>.

รุ่นแก้ไขเมื่อ 00:02, 11 กันยายน 2557

This is part of probstat.

Useful properties

1. For a random variable X and constants a and c, prove that E[aX+c]=aE[X] + c.

2. Let X be a random variable and , prove that .

Dinner dish experiment

Recall the dinner experiment: n people are having a dinner at the table with a rotating turntable. Each person orders one different dish and gets her/his order exactly in front of her/him. They decide to randomly rotate the turntable so that each one of them will get a random dish. Let random variable Y be the number of people who get their own dish after the random rotation.

1. Find .

We define the variance Var(Y) of a random variable Y whose expectation to be .

2. Find Var(Y).

Binomial random variables

Let random variable X be a binomial random variable with parameters n and p, i.e., let X be the number of successful outcomes we get by performing experiment that has success probability p for n times independently.

For , define a random variable Xi to be 1 if the i-th experiment is successful and 0 otherwise.

1. Find .

2. Find .

3. From the definition, we have that . Rewrite in terms of and .

4. Use the expansion in (3) to find and .