ผลต่างระหว่างรุ่นของ "Probstat/week4 practice 2"
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) |
||
(ไม่แสดง 3 รุ่นระหว่างกลางโดยผู้ใช้คนเดียวกัน) | |||
แถว 22: | แถว 22: | ||
For <math>1\leq i\leq n</math>, define a random variable ''X<sub>i</sub>'' to be 1 if the ''i''-th experiment is successful and 0 otherwise. | For <math>1\leq i\leq n</math>, define a random variable ''X<sub>i</sub>'' to be 1 if the ''i''-th experiment is successful and 0 otherwise. | ||
− | 1. Find <math> | + | 1. Find <math>\mathrm{E}[X_i^2]</math>. |
− | 2. Find <math>{\mathrm E}[ | + | 2. Find <math>\mathrm{E}[X_i\cdot X_j]</math>. |
+ | |||
+ | 3. From the definition, we have that <math>X=\sum_{i=1}^n X_i</math>. Rewrite <math>X^2</math> in terms of <math>X_i^2</math> and <math>X_i\cdot X_j</math>. | ||
+ | |||
+ | 4. Use the expansion in (3) to find <math>\mathrm{E}[X^2]</math> and <math>\mathrm{Var}(X)</math>. |
รุ่นแก้ไขปัจจุบันเมื่อ 01:59, 16 กันยายน 2557
- This is part of probstat.
Useful properties
1. For a random variable X and constants a and c, prove that E[aX+c]=aE[X] + c.
2. Let X be a random variable and , prove that .
Dinner dish experiment
Recall the dinner experiment: n people are having a dinner at the table with a rotating turntable. Each person orders one different dish and gets her/his order exactly in front of her/him. They decide to randomly rotate the turntable so that each one of them will get a random dish. Let random variable Y be the number of people who get their own dish after the random rotation.
1. Find .
We define the variance Var(Y) of a random variable Y whose expectation to be .
2. Find Var(Y).
Binomial random variables
Let random variable X be a binomial random variable with parameters n and p, i.e., let X be the number of successful outcomes we get by performing experiment that has success probability p for n times independently.
For , define a random variable Xi to be 1 if the i-th experiment is successful and 0 otherwise.
1. Find .
2. Find .
3. From the definition, we have that . Rewrite in terms of and .
4. Use the expansion in (3) to find and .