ผลต่างระหว่างรุ่นของ "204211-src-51-1"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 49: แถว 49:
  
 
* 24 ส.ค. 51:
 
* 24 ส.ค. 51:
** the Pigeon-Hole Principle
+
** review of modular arithmatics
** recursive thinking
+
*** basic identities
** polynomials and applications of modular arithematics
+
*** if <math>\gcd(a,b)=1</math> then <math>a^{-1}\pmod p</math> exists.
 +
**** the proof didn't use the fact that a pair $x,y$ such that $ax+by=\gcd(a,b)$ exists
 +
** Fermat's Little Theorem (with proof)
 +
** RSA and Euler's Theorem

รุ่นแก้ไขเมื่อ 03:58, 24 สิงหาคม 2551

Planed

  • การนับ
    • นับเบื้องต้น เส้นตรง, วงกลม, nCr, nPr
    • inclusion-exclusion techniques
      • bijections
    • advanced counting (placing rods)
  • Proof Techniques
    • logics
    • direct proof
    • indirect proof
    • proof by contradiction
  • Advanced proof techniques
    • mathematical induction
      • basic induction
      • strong induction
      • examples used: tiling, placing dominoes, induction on matrices, Fibonacci numbers
      • recursive thinking $
    • Pigeon-Hole Principle $
    • diagonalization
  • Number theory
    • divisibility
    • congruence
    • gcd, extended gcd
    • modular arithematics
    • Fermat's Little Theorem
    • polynomials $
    • secret sharing, coding $
    • RSA $

$ --- absence, to be covered

Actual

  • 10 ส.ค. 51:
    • review basic induction & counting.
    • inclusion-exclusion principles.
    • using bijection in counting. (without actually define what a bijection is)
      • a bijection between subsets and bitstrings
      • a bijection between odd-sized subsets and even-sized subsets
        • gave out idea of the bijection without proof: will be in homework
      • proof of the inclusion-exclusion principle (sketch)
  • 17 ส.ค. 51:
    • diagonalization
    • advanced counting: placing rods
  • 24 ส.ค. 51:
    • review of modular arithmatics
      • basic identities
      • if then exists.
        • the proof didn't use the fact that a pair $x,y$ such that $ax+by=\gcd(a,b)$ exists
    • Fermat's Little Theorem (with proof)
    • RSA and Euler's Theorem