ผลต่างระหว่างรุ่นของ "204211-src-51-1"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 58: แถว 58:
  
 
===31 ส.ค. 51===
 
===31 ส.ค. 51===
 +
* Number Theory
 +
** Primality testing and proof of Fermat's Little Theorem
 +
** Proof of Euler Theorem and RSA

รุ่นแก้ไขเมื่อ 02:28, 31 สิงหาคม 2551

Planed

  • การนับ
    • นับเบื้องต้น เส้นตรง, วงกลม, nCr, nPr
    • inclusion-exclusion techniques
      • bijections
    • advanced counting (placing rods)
  • Proof Techniques
    • logics
    • direct proof
    • indirect proof
    • proof by contradiction
  • Advanced proof techniques
    • mathematical induction
      • basic induction
      • strong induction
      • examples used: tiling, placing dominoes, induction on matrices, Fibonacci numbers
      • recursive thinking $
    • Pigeon-Hole Principle $
    • diagonalization
  • Number theory
    • divisibility
    • congruence
    • gcd, extended gcd
    • modular arithematics
    • Fermat's Little Theorem
    • polynomials $
    • secret sharing, coding $
    • RSA $

$ --- absence, to be covered

Actual

10 ส.ค. 51

  • review basic induction & counting.
  • inclusion-exclusion principles.
  • using bijection in counting. (without actually define what a bijection is)
    • a bijection between subsets and bitstrings
    • a bijection between odd-sized subsets and even-sized subsets
      • gave out idea of the bijection without proof: will be in homework
    • proof of the inclusion-exclusion principle (sketch)

17 ส.ค. 51

  • diagonalization
  • advanced counting: placing rods

24 ส.ค. 51

  • review of modular arithmatics
    • basic identities
    • if then exists.
      • the proof didn't use the fact that a pair $x,y$ such that $ax+by=\gcd(a,b)$ exists
  • RSA, Euler's Theorem, and Fermat's Little Theorem (without proofs)
  • TODO: (Homework) RSA by hand, Proof of Fermat's Little Theorem
  • NEXT: Proof of Euler's Theorem and correctness of RSA

31 ส.ค. 51

  • Number Theory
    • Primality testing and proof of Fermat's Little Theorem
    • Proof of Euler Theorem and RSA