ผลต่างระหว่างรุ่นของ "204211-src-51-1"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
 
(ไม่แสดง 23 รุ่นระหว่างกลางโดยผู้ใช้ 3 คน)
แถว 3: แถว 3:
 
* การนับ
 
* การนับ
 
** นับเบื้องต้น เส้นตรง, วงกลม, nCr, nPr
 
** นับเบื้องต้น เส้นตรง, วงกลม, nCr, nPr
** inclusion-exclusion techniques $
+
** inclusion-exclusion techniques
** advanced counting (placing rods) $
+
*** bijections
 +
** advanced counting (placing rods)
  
 
* Proof Techniques
 
* Proof Techniques
แถว 17: แถว 18:
 
*** strong induction
 
*** strong induction
 
*** examples used: tiling, placing dominoes, induction on matrices, Fibonacci numbers
 
*** examples used: tiling, placing dominoes, induction on matrices, Fibonacci numbers
*** recursive thinking $
+
*** recursive thinking  
** Pigeon-Hole Principle $
+
** Pigeon-Hole Principle  
** diagonalization $
+
** diagonalization
  
 
* Number theory
 
* Number theory
แถว 27: แถว 28:
 
** modular arithematics
 
** modular arithematics
 
** Fermat's Little Theorem
 
** Fermat's Little Theorem
** polynomials $
+
** polynomials  
** secret sharing, coding $
+
** secret sharing, erasure codes
** RSA $
+
** RSA
 +
 
 +
* Stable marriage
 +
 
 +
* Intro to Graph theory
  
 
$ --- absence, to be covered
 
$ --- absence, to be covered
  
 
==Actual==
 
==Actual==
* 10 ส.ค. 51:
+
===10 ส.ค. 51===
 +
* review basic induction & counting.
 +
* inclusion-exclusion principles.
 +
* using bijection in counting.  (without actually define what a bijection is)
 +
** a bijection between subsets and bitstrings
 +
** a bijection between odd-sized subsets and even-sized subsets
 +
*** gave out idea of the bijection without proof: will be in homework
 +
** proof of the inclusion-exclusion principle (sketch)
 +
 
 +
===17 ส.ค. 51===
 +
* diagonalization
 +
* advanced counting: placing rods
 +
 
 +
===24 ส.ค. 51===
 +
* review of modular arithmatics
 +
** basic identities
 +
** if <math>\gcd(a,b)=1</math> then <math>a^{-1}\pmod p</math> exists.
 +
*** the proof didn't use the fact that a pair $x,y$ such that $ax+by=\gcd(a,b)$ exists
 +
* RSA, Euler's Theorem, and Fermat's Little Theorem (without proofs)
 +
* TODO: (Homework) RSA by hand, Proof of Fermat's Little Theorem
 +
* NEXT: Proof of Euler's Theorem and correctness of RSA
 +
 
 +
===31 ส.ค. 51===
 +
* Number Theory
 +
** Review of RSA, why hacking RSA is hard, its assumption (hard to factor large numbers)
 +
*** Need large primes to do RSA
 +
** Primality testing
 +
*** Testing in exponential time ($O(p)$ and $O(\sqrt{p})$ for testing $p$)
 +
**** Proved (quick): for a composite $a$, one of its factor must be at most $\sqrt{a}$
 +
*** Testing based on Fermat's Little Theorem
 +
**** Implementation of the test: Repeated squaring
 +
**** Success probability of the test and [http://en.wikipedia.org/wiki/Carmichael_number Carmicheal number]
 +
*** Proof of Fermat's Little Theorem
 +
** Euler Theorem and RSA
 +
*** Idea of the proof of Euler Theorem (should be completed in h.w.)
 +
*** Euler Theorem => Correctness of RSA
 +
* Recursions
 +
** Recursive definition and counting
 +
** Recursive algorithms, divide and conquer
 +
 
 +
===14 ก.ย. 51===
 +
====เช้า====
 +
* polynomials and codes
 +
** polynomials: two properties:  
 +
*** any degree-$d$ polynomial has at most $d$ roots.
 +
*** any degree-$d$ polynomial can be determined exactly with $d+1$ points.
 +
** polynomial interpolation
 +
*** by solving a system of linear equations
 +
*** using Lagrange method
 +
====บ่าย====
 +
* polynomials and codes (cont.)
 +
** finite fields
 +
** secret sharing
 +
** erasure codes
 +
* stable matching

รุ่นแก้ไขปัจจุบันเมื่อ 05:04, 14 กันยายน 2551

Planed

  • การนับ
    • นับเบื้องต้น เส้นตรง, วงกลม, nCr, nPr
    • inclusion-exclusion techniques
      • bijections
    • advanced counting (placing rods)
  • Proof Techniques
    • logics
    • direct proof
    • indirect proof
    • proof by contradiction
  • Advanced proof techniques
    • mathematical induction
      • basic induction
      • strong induction
      • examples used: tiling, placing dominoes, induction on matrices, Fibonacci numbers
      • recursive thinking
    • Pigeon-Hole Principle
    • diagonalization
  • Number theory
    • divisibility
    • congruence
    • gcd, extended gcd
    • modular arithematics
    • Fermat's Little Theorem
    • polynomials
    • secret sharing, erasure codes
    • RSA
  • Stable marriage
  • Intro to Graph theory

$ --- absence, to be covered

Actual

10 ส.ค. 51

  • review basic induction & counting.
  • inclusion-exclusion principles.
  • using bijection in counting. (without actually define what a bijection is)
    • a bijection between subsets and bitstrings
    • a bijection between odd-sized subsets and even-sized subsets
      • gave out idea of the bijection without proof: will be in homework
    • proof of the inclusion-exclusion principle (sketch)

17 ส.ค. 51

  • diagonalization
  • advanced counting: placing rods

24 ส.ค. 51

  • review of modular arithmatics
    • basic identities
    • if then exists.
      • the proof didn't use the fact that a pair $x,y$ such that $ax+by=\gcd(a,b)$ exists
  • RSA, Euler's Theorem, and Fermat's Little Theorem (without proofs)
  • TODO: (Homework) RSA by hand, Proof of Fermat's Little Theorem
  • NEXT: Proof of Euler's Theorem and correctness of RSA

31 ส.ค. 51

  • Number Theory
    • Review of RSA, why hacking RSA is hard, its assumption (hard to factor large numbers)
      • Need large primes to do RSA
    • Primality testing
      • Testing in exponential time ($O(p)$ and $O(\sqrt{p})$ for testing $p$)
        • Proved (quick): for a composite $a$, one of its factor must be at most $\sqrt{a}$
      • Testing based on Fermat's Little Theorem
        • Implementation of the test: Repeated squaring
        • Success probability of the test and Carmicheal number
      • Proof of Fermat's Little Theorem
    • Euler Theorem and RSA
      • Idea of the proof of Euler Theorem (should be completed in h.w.)
      • Euler Theorem => Correctness of RSA
  • Recursions
    • Recursive definition and counting
    • Recursive algorithms, divide and conquer

14 ก.ย. 51

เช้า

  • polynomials and codes
    • polynomials: two properties:
      • any degree-$d$ polynomial has at most $d$ roots.
      • any degree-$d$ polynomial can be determined exactly with $d+1$ points.
    • polynomial interpolation
      • by solving a system of linear equations
      • using Lagrange method

บ่าย

  • polynomials and codes (cont.)
    • finite fields
    • secret sharing
    • erasure codes
  • stable matching