ผลต่างระหว่างรุ่นของ "01204211/activity2 logic and proofs"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
(01204211/activity2 logic2 ถูกเปลี่ยนชื่อเป็น 01204211/activity2 logic and proofs)
แถว 1: แถว 1:
 
: ''This is part of [[01204211-58]].''
 
: ''This is part of [[01204211-58]].''
  
: This is under construction..
+
== In-class activities ==
  
 
=== Inference rules ===
 
=== Inference rules ===
 +
1. Use a truth table to prove Hypothetical syllogism.  That is show that the conclusion <math>P\Rightarrow R</math> logically follows from hypotheses <math>P\Rightarrow Q</math> and <math>Q\Rightarrow R</math>.
  
This part should be attempted after the instructor has discussed exhaustive proof technique and inference rules.
 
  
4. Use a truth table to prove Hypothetical syllogism.  That is show that the conclusion <math>P\Rightarrow R</math> logically follows from hypotheses <math>P\Rightarrow Q</math> and <math>Q\Rightarrow R</math>.
+
2. Use inference rules and standard logical equivalences to show that hypotheses
 
 
 
 
5. Use inference rules and standard logical equivalences to show that hypotheses
 
  
 
* <math>P\Rightarrow R</math>
 
* <math>P\Rightarrow R</math>
แถว 18: แถว 15:
  
  
6. Use inference rules and standard logical equivalences to show that hypotheses
+
3. Use inference rules and standard logical equivalences to show that hypotheses
  
 
* <math>P\Rightarrow Q</math>
 
* <math>P\Rightarrow Q</math>
แถว 26: แถว 23:
  
  
7. Using inference rules to argue that if we assume  
+
4. Using inference rules to argue that if we assume  
  
 
* <math>\neg P\Rightarrow Q</math>,  
 
* <math>\neg P\Rightarrow Q</math>,  
แถว 35: แถว 32:
 
then we can conclude that <math>W</math> is false.
 
then we can conclude that <math>W</math> is false.
  
 +
== Homework 2 ==
 +
 +
Due date: ''TBA''
  
8.
+
5.
  
  
9.
+
6.

รุ่นแก้ไขเมื่อ 15:26, 26 สิงหาคม 2558

This is part of 01204211-58.

In-class activities

Inference rules

1. Use a truth table to prove Hypothetical syllogism. That is show that the conclusion logically follows from hypotheses and .


2. Use inference rules and standard logical equivalences to show that hypotheses

leads to the conclusion .


3. Use inference rules and standard logical equivalences to show that hypotheses

leads to the conclusion .


4. Using inference rules to argue that if we assume

  • ,
  • ,
  • , and

then we can conclude that is false.

Homework 2

Due date: TBA

5.


6.