ผลต่างระหว่างรุ่นของ "01204211/activity3 induction 1"
ไปยังการนำทาง
ไปยังการค้นหา
.
.
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) |
||
แถว 33: | แถว 33: | ||
: ''Due: 16 Sept 2015'' | : ''Due: 16 Sept 2015'' | ||
+ | |||
+ | '''H.1''' (LPV-2.1.5) Prove the following identity: | ||
+ | |||
+ | <center><math>1\cdot 2 + 2\cdot 3 + 3\cdot 4 + \cdots + (n-1)\cdot n = \frac{(n-1)\cdot n\cdot (n+1)}{3}.</math></center> |
รุ่นแก้ไขเมื่อ 01:42, 3 กันยายน 2558
- This is part of 01204211-58
In-class activities 3
A.1 (LPV) Prove that for any integer , we have that
In problem A.1, you have to state clearly the property that you want to prove. Note that we use variable in the statement, to avoid confusion, you should choose other variables when you work on the inductive step.
A.2 (MN) Prove that for any integer , the following formula is true:
In problem A.2, you have to state clearly the property that you want to prove.
A.3 (MN-exercise-1b) Prove that for integer ,
A.4
A.5
A.6
Homework 3
- Due: 16 Sept 2015
H.1 (LPV-2.1.5) Prove the following identity: