ผลต่างระหว่างรุ่นของ "01204211/homework5 counting 2"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 3: แถว 3:
 
'''Due:''' ''19 Oct 2015''
 
'''Due:''' ''19 Oct 2015''
  
'''H.1''' How many anagrams can you make from the word INNOVATION?
+
'''H.1'''  
  
'''H.2'''  
+
'''H.2''' How many anagrams can you make from the word INNOVATION?
  
 
'''H.3''' (LPV-3.4.1) In how many ways can you distribute all <math>n</math> pennies to <math>k</math> children if each child is supposed to get at least 2?
 
'''H.3''' (LPV-3.4.1) In how many ways can you distribute all <math>n</math> pennies to <math>k</math> children if each child is supposed to get at least 2?
แถว 14: แถว 14:
 
<math>
 
<math>
 
\binom{n}{0}\binom{m}{k} + \binom{n}{1}\binom{m}{k-1} + \cdots + \binom{n}{k-1}\binom{m}{1} + \binom{n}{k}\binom{m}{0}  
 
\binom{n}{0}\binom{m}{k} + \binom{n}{1}\binom{m}{k-1} + \cdots + \binom{n}{k-1}\binom{m}{1} + \binom{n}{k}\binom{m}{0}  
= \binom{n+m}{k}  
+
= \binom{n+m}{k}.
 +
</math>
 +
</center>
 +
 
 +
'''H.5''' (LPV-3.8.8) Prove the following identity
 +
 
 +
<center>
 +
<math>
 +
\sum_{k=0}^n\binom{n}{k}\binom{k}{m} = \binom{n}{m}2^{n-m}.
 
</math>
 
</math>
 
</center>
 
</center>

รุ่นแก้ไขเมื่อ 00:51, 4 ตุลาคม 2558

This is part of 01204211-58

Due: 19 Oct 2015

H.1

H.2 How many anagrams can you make from the word INNOVATION?

H.3 (LPV-3.4.1) In how many ways can you distribute all pennies to children if each child is supposed to get at least 2?

H.4 (LPV-3.6.3) Prove the following identity:

H.5 (LPV-3.8.8) Prove the following identity