ผลต่างระหว่างรุ่นของ "01204211/homework5 counting 2"
ไปยังการนำทาง
ไปยังการค้นหา
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) |
||
แถว 3: | แถว 3: | ||
'''Due:''' ''19 Oct 2015'' | '''Due:''' ''19 Oct 2015'' | ||
− | '''H.1''' | + | '''H.1''' |
− | '''H.2''' | + | '''H.2''' How many anagrams can you make from the word INNOVATION? |
'''H.3''' (LPV-3.4.1) In how many ways can you distribute all <math>n</math> pennies to <math>k</math> children if each child is supposed to get at least 2? | '''H.3''' (LPV-3.4.1) In how many ways can you distribute all <math>n</math> pennies to <math>k</math> children if each child is supposed to get at least 2? | ||
แถว 14: | แถว 14: | ||
<math> | <math> | ||
\binom{n}{0}\binom{m}{k} + \binom{n}{1}\binom{m}{k-1} + \cdots + \binom{n}{k-1}\binom{m}{1} + \binom{n}{k}\binom{m}{0} | \binom{n}{0}\binom{m}{k} + \binom{n}{1}\binom{m}{k-1} + \cdots + \binom{n}{k-1}\binom{m}{1} + \binom{n}{k}\binom{m}{0} | ||
− | = \binom{n+m}{k} | + | = \binom{n+m}{k}. |
+ | </math> | ||
+ | </center> | ||
+ | |||
+ | '''H.5''' (LPV-3.8.8) Prove the following identity | ||
+ | |||
+ | <center> | ||
+ | <math> | ||
+ | \sum_{k=0}^n\binom{n}{k}\binom{k}{m} = \binom{n}{m}2^{n-m}. | ||
</math> | </math> | ||
</center> | </center> |
รุ่นแก้ไขเมื่อ 00:51, 4 ตุลาคม 2558
- This is part of 01204211-58
Due: 19 Oct 2015
H.1
H.2 How many anagrams can you make from the word INNOVATION?
H.3 (LPV-3.4.1) In how many ways can you distribute all pennies to children if each child is supposed to get at least 2?
H.4 (LPV-3.6.3) Prove the following identity:
H.5 (LPV-3.8.8) Prove the following identity