ผลต่างระหว่างรุ่นของ "01204211/homework6 number theory 1"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
 
(ไม่แสดง 4 รุ่นระหว่างกลางโดยผู้ใช้คนเดียวกัน)
แถว 1: แถว 1:
 
: ''This is part of [[01204211-58]]''
 
: ''This is part of [[01204211-58]]''
  
'''Due:''' TBA
+
'''Due:''' 21 Oct, 2015
  
 
'''H.1''' (LPV-6.1.3) Prove that if <math>a|b</math> and <math>a|c</math>, then <math>a|b+c</math> and <math>a|b-c</math>.
 
'''H.1''' (LPV-6.1.3) Prove that if <math>a|b</math> and <math>a|c</math>, then <math>a|b+c</math> and <math>a|b-c</math>.
  
  
'''H.2''' Prove that for integers <math>a</math> and <math>b</math> and positive integer <math>q</math> the following statements are true.
+
'''H.2''' (LPV-6.10.3) Prove that if <math>c\neq 0</math> and <math>ac|bc</math>, then <math>a|b</math>.
  
(a) <math>(a+b)\;\bmod q = ((a\;\bmod q) + (b\;\bmod q))\;\bmod q</math>
 
  
 +
'''H.3''' Prove that for integers <math>a</math> and <math>b</math> and positive integer <math>q</math> the following statements are true.
  
'''H.3''' (LPV-6.1.6) (a) Prove that for every integer <math>a</math>, <math>a-1|a^2-1</math>.
+
(a) <math>(a+b)\;\bmod\; q = ((a\;\bmod\; q) + (b\;\bmod\; q))\;\bmod\; q</math>
 +
 
 +
(b) <math>(ab)\;\bmod\; q = ((a\;\bmod\; q) \times (b\;\bmod\; q))\;\bmod\; q</math>
 +
 
 +
Notes: this fact may be useful:  If <math>r=a\;\bmod\;q</math>, then there exists an integer <math>k</math> such that <math>a=kq+r</math>.
 +
 
 +
 
 +
'''H.4''' (LPV-6.1.6) (a) Prove that for every integer <math>a</math>, <math>a-1|a^2-1</math>.
  
 
(b) More generally, prove that for every integer <math>a</math> and positive integer <math>n</math>, <math>a-1|a^n-1</math>.
 
(b) More generally, prove that for every integer <math>a</math> and positive integer <math>n</math>, <math>a-1|a^n-1</math>.
  
  
'''H.4''' (LPV-6.3.3) Suppose that <math>a</math> and <math>b</math> are integers and <math>a|b</math>.  Suppose that <math>p</math> is a prime and <math>p|b</math>, but <math>p\not| a</math>.  Prove that <math>p|(b/a)</math>.
+
'''H.5''' (LPV-6.3.3) Suppose that <math>a</math> and <math>b</math> are integers and <math>a|b</math>.  Suppose that <math>p</math> is a prime and <math>p|b</math>, but <math>p\not| a</math>.  Prove that <math>p|(b/a)</math>.
 +
 
 +
 
 +
'''H.6''' Let <math>p</math> be a prime.  Consider integers <math>a</math> and <math>b</math>, such that <math>1\leq a,b\leq p-1</math>.  Prove that if <math>a \ \bmod p = b \ \bmod p</math> then <math>a=b</math>.
  
  
'''H.5''' Let <math>p</math> be a prime. Consider integers <math>a</math> and <math>b</math>, such that <math>1\leq a,b\leq p-1</math>.  Prove that if <math>a \ \bmod p = b \ \bmod p</math> then <math>a=b</math>.
+
'''H.7''' (LPV-6.10.7) Prove that if <math>a > 3</math>, then <math>a</math>, <math>a+2</math>, and <math>a+4</math> cannot be all primes. (Can they all be powers of primes?)
  
  
'''H.6'''
+
'''H.8''' (LPV-6.10.14) Find pairs of integers for which the Euclidean Algorithm runs for (a) 2 steps, and (b) 6 steps.
  
 +
''Notes:'' ''Recall that the Euclidean algorithm <tt>GCD(a,b)</tt> is defined as:''
  
 +
FUNCTION GCD(a,b)
 +
1.  if b|a then return b endif
 +
2.  return GCD(b, a mod b)
  
'''H.7'''
+
''In this problem let's count the number of steps the algorithm runs by the number of times function GCD is called. For example, GCD(8,2) runs 1 one step, but GCD(18,10) runs for 3 steps.  In this problem, you only have to give '''examples''' of pairs for cases (a) and (b).''
  
  
'''H.8'''
+
'''H.9''' (LPV-6.10.16) Prove that for every positive integer <math>m</math>, there is a Fibonacci number, beside <math>F_0=0</math>, divisible by <math>m</math>.  For example, when <math>m=4</math>, we have <math>F_6=8</math> which is divisible by <math>m</math>.

รุ่นแก้ไขปัจจุบันเมื่อ 16:09, 11 ตุลาคม 2558

This is part of 01204211-58

Due: 21 Oct, 2015

H.1 (LPV-6.1.3) Prove that if and , then and .


H.2 (LPV-6.10.3) Prove that if and , then .


H.3 Prove that for integers and and positive integer the following statements are true.

(a)

(b)

Notes: this fact may be useful: If , then there exists an integer such that .


H.4 (LPV-6.1.6) (a) Prove that for every integer , .

(b) More generally, prove that for every integer and positive integer , .


H.5 (LPV-6.3.3) Suppose that and are integers and . Suppose that is a prime and , but . Prove that .


H.6 Let be a prime. Consider integers and , such that . Prove that if then .


H.7 (LPV-6.10.7) Prove that if , then , , and cannot be all primes. (Can they all be powers of primes?)


H.8 (LPV-6.10.14) Find pairs of integers for which the Euclidean Algorithm runs for (a) 2 steps, and (b) 6 steps.

Notes: Recall that the Euclidean algorithm GCD(a,b) is defined as:

FUNCTION GCD(a,b)
1.  if b|a then return b endif
2.  return GCD(b, a mod b)

In this problem let's count the number of steps the algorithm runs by the number of times function GCD is called. For example, GCD(8,2) runs 1 one step, but GCD(18,10) runs for 3 steps. In this problem, you only have to give examples of pairs for cases (a) and (b).


H.9 (LPV-6.10.16) Prove that for every positive integer , there is a Fibonacci number, beside , divisible by . For example, when , we have which is divisible by .