ผลต่างระหว่างรุ่นของ "418531 ภาคต้น 2552/โจทย์ปัญหาการวิเคราะห์เชิงเส้นกำกับ/เฉลยข้อ 2"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
 
(ไม่แสดง 4 รุ่นระหว่างกลางโดยผู้ใช้ 2 คน)
แถว 11: แถว 11:
  
 
== ข้อย่อย 3 ==
 
== ข้อย่อย 3 ==
สมมติให้ <math>f(n) = O(g(n)) \,</math> แสดงว่ามีค่าคงที่ <math>c > 0 \,</math> และ <math>n_0 \,</math> ที่ทำให้ถ้า <math>n \geq n_0 \,</math> แล้ว <math>f(n) \leq c g(n) \,</math> ซึ่งหมายความว่า <math>2^{f(n)} < 2^{c g(n)} = 2^c \cdot 2^{g(n)} \,</math>
+
ข้อความนี้ไม่เป็นจริง
 +
 
 +
ให้ <math>f(n) = 2n \,</math> เราได้ว่า <math>f(n) = O(n) \,</math> แต่ <math>2^{f(n)} = 2^{2n} = 4^n \neq O(2^n) \,</math>
  
 
== ข้อย่อย 4 ==
 
== ข้อย่อย 4 ==

รุ่นแก้ไขปัจจุบันเมื่อ 08:12, 4 สิงหาคม 2552

ข้อย่อย 1

ข้อความนี้ไม่เป็นจริง โดยการการแสดงตัวอย่างขัดแย้งคือ ให้

จะได้ว่า นั่นคือ เป็นจริง แต่ จะได้ว่า นั่นคือ ไม่เป็นจริง

ข้อย่อย 2

ข้อความนี้ไม่เป็นจริง จะแสดงตัวอย่างขัดแย้ง คือให้

จะได้ว่า คือ

ข้อย่อย 3

ข้อความนี้ไม่เป็นจริง

ให้ เราได้ว่า แต่

ข้อย่อย 4

ข้อความนี้ไม่เป็นจริง จะแสดงตัวอย่างขัดแย้งคือให้ จะได้ว่า

ซึ่ง

ข้อย่อย 5

ข้อความนี้เป็นจริง จะทำการพิสูจน์

จากที่รู้ว่า เป็นจริง นั่นคือ สำหรับจำนวนเต็มบวก บางตัว แล้ว จะเป็นจริง สำหรับทุก ๆ

ต้องการแสดงว่า นั่นคือต้องการจำนวนเต็มบวก บางตัว ที่ทำให้ เป็นจริง สำหรับทุก ๆ

จากข้างต้นจะให้ ก็จะได้ว่า เป็นจริง

ข้อย่อย 6

ข้อความนี้ไม่เป็นจริง จะแสดงตัวอย่างขัดแย้ง ให้ จะได้ว่า

ซึ่ง