ผลต่างระหว่างรุ่นของ "418531 ภาคต้น 2552/โจทยปัญหาการค้นหาด้วยพละกำลังเยี่ยงควายถึก/เฉลยข้อ 5"
Aoy (คุย | มีส่วนร่วม) |
Aoy (คุย | มีส่วนร่วม) |
||
แถว 31: | แถว 31: | ||
== ข้อย่อย 2 == | == ข้อย่อย 2 == | ||
+ | โจทย์ต้องการให้อัลกอริทึมทำงานได้ในเวลา<math>O(n) \,</math> นั่นคือ พออ่านอินพุตเสร็จแล้วต้องทำการตรวจสอบได้ด้วยว่าเป็นลำดับเลขคณิตหรือไม่ พร้อมทั้งต้องหาช่วง(ลำดับย่อย)ที่เป็นลำดับเลขคณิตที่ยาวที่สุดได้ด้วย ซึ่งการทำงานดังกล่าวจะทำได้ เมื่อเราทำการคำนวณผลต่างระหว่างสมาชิกในลำดับไปพร้อม ๆ กับการหยิบสมาชิกแต่ละตัวมาดูนั่นเอง นั่นคือ เมื่อเราพิจารณาสมาชิกตัวที่หนึ่ง เราก็หาผลต่างของมันกับสมาชิกตัวที่สอง เมื่อพิจารณาสมาชิกตัวที่สอง เราก็หาผลต่างของมันกับสมาชิกตัวที่สาม ทำแบบนี้ไปเรื่อย ๆ เมื่อพิจารณาครบทุกตัว ตอนนี้เราก็จะมีผลต่างระหว่างสมาชิกทุกตัวในลำดับอินพุตแล้ว จากนั้นวิธีการตรวจสอบว่าเป็นลำดับเลขคณิตที่ยาวที่สุดหรือไม่ก็ทำได้โดยดูว่าค่าผลต่างพวกนี้เปลี่ยนหรือไม่ ถ้ายังไม่เปลี่ยนก็นับว่าเป็นลำดับเลขคณิตไปเรื่อย ๆ แต่ถ้าเปลี่ยนก็แสดงว่าไม่เป็นลำดับเลขคณิตแล้ว ตัวแปรที่ใช้ในการจำว่าตำแหน่งเริ่มของลำดับย่อยก็ต้องเปลี่ยนไป แล้วเริ่มนับความยาวใหม่นั่นเอง | ||
+ | |||
+ | จากแนวคิดข้างต้นสามารถ เขียนเป็น pseudocode ได้ดังนี้ |
รุ่นแก้ไขเมื่อ 08:54, 18 สิงหาคม 2552
ข้อย่อย 1
อินพุต: ลำดับของจำนวนเต็มที่มีความยาว
เอาพุต: ลำดับย่อยของลำดับที่เป็นอินพุตที่มีความยาวมากที่สุด และเป็นลำดับเลขคณิต
แนวคิด ข้อนี้วัตถุที่เราต้องการหาคือลำดับย่อย ตำแหน่งเริ่มต้น และตำแหน่งสุดท้าย ในลำดับที่ให้มา โดยที่ หรือคือช่วงที่เราเรียนกันไปแล้วในห้องเรียนนั่นเอง และเงื่อนไข คือต้องเป็นลำดับเลขคณิต(ที่มีความยาวมากที่สุด) ดังนั้นสิ่งที่อัลกอริทึมของเราต้องทำ คือหยิบช่วงแต่ละช่วง (ลำดับย่อยแต่ละลำดับ) มาดู แล้วดูว่ามันเป็นลำดับเลขคณิตหรือไม่ ถ้าใช่ก็ตรวจสอบอีกว่า มันเป็นลำดับเลขคณิตที่เราเคยรู้จักและยาวกว่าหรือไม่ ถ้ายาวกว่าก็เปลี่ยนมาจำลำดับย่อยใหม่นี้
จากแนวคิดข้างต้น เขียนเป็น pseudocode ได้ดังนี้
ABS(x,y) // เป็น subroutine ที่ใช้ในการหาผลต่างระหว่างเลขสองตัว
- if (x-y < 0)
- return ((-1).(x-y))
- return(x-y)
CHECK_ARITH(A,i,j) // เป็น subroutine ที่ใช้ในการตรวจสอบว่าลำดับย่อยในช่วง i ถึง j เป็นลำดับเลขคณิตหรือไม่
- k = ABS(A[i],A[i+1]) // กำหนดค่า k เป็นผลต่างระหว่างเลขตัวแรกกับตัวที่สองในลำดับย่อย
- for k=i+1 to k<j
- if(ABS(A[k],A[k+1] != k)) // ถ้ามีตัวเลขของตัวในลำดับย่อยมีผลต่างไม่เท่ากับ k ก็บอกว่าลำดับย่อยในช่วง i ถึง j นี้ไม่เป็นลำดับเลขคณิต
- retrun (0)
- return(1)
- if(ABS(A[k],A[k+1] != k)) // ถ้ามีตัวเลขของตัวในลำดับย่อยมีผลต่างไม่เท่ากับ k ก็บอกว่าลำดับย่อยในช่วง i ถึง j นี้ไม่เป็นลำดับเลขคณิต
LONGESTINTERVAL(A,n,maxi,maxj)
- max = -10000000
- for i=o to i=n
- for j=i to j = n
- flag=CHECK_ARITH(A,i,j) // ตรวจสอบว่าลำดับย่อยที่กำลังพิจารณาเป็นลำดับเลขคณิตหรือไม่
- if (flag) // ถ้าเป็นลำดับเลขคณิต
- if ((j-i+1)> max) // ตรวจสอบดูว่าความยาวของลำดับเลขคณิตนี้ยาวกว่าลำดับเลขคณิตก่อนหน้าที่เคยเจอหรือไม่
- maxi = i // ถ้าใช่ก็เปลี่ยนไปจำลำดับเลขคณิตที่ยาวกว่าลำดับก่อนหน้านี้
- maxj = j
- for j=i to j = n
ข้อย่อย 2
โจทย์ต้องการให้อัลกอริทึมทำงานได้ในเวลา นั่นคือ พออ่านอินพุตเสร็จแล้วต้องทำการตรวจสอบได้ด้วยว่าเป็นลำดับเลขคณิตหรือไม่ พร้อมทั้งต้องหาช่วง(ลำดับย่อย)ที่เป็นลำดับเลขคณิตที่ยาวที่สุดได้ด้วย ซึ่งการทำงานดังกล่าวจะทำได้ เมื่อเราทำการคำนวณผลต่างระหว่างสมาชิกในลำดับไปพร้อม ๆ กับการหยิบสมาชิกแต่ละตัวมาดูนั่นเอง นั่นคือ เมื่อเราพิจารณาสมาชิกตัวที่หนึ่ง เราก็หาผลต่างของมันกับสมาชิกตัวที่สอง เมื่อพิจารณาสมาชิกตัวที่สอง เราก็หาผลต่างของมันกับสมาชิกตัวที่สาม ทำแบบนี้ไปเรื่อย ๆ เมื่อพิจารณาครบทุกตัว ตอนนี้เราก็จะมีผลต่างระหว่างสมาชิกทุกตัวในลำดับอินพุตแล้ว จากนั้นวิธีการตรวจสอบว่าเป็นลำดับเลขคณิตที่ยาวที่สุดหรือไม่ก็ทำได้โดยดูว่าค่าผลต่างพวกนี้เปลี่ยนหรือไม่ ถ้ายังไม่เปลี่ยนก็นับว่าเป็นลำดับเลขคณิตไปเรื่อย ๆ แต่ถ้าเปลี่ยนก็แสดงว่าไม่เป็นลำดับเลขคณิตแล้ว ตัวแปรที่ใช้ในการจำว่าตำแหน่งเริ่มของลำดับย่อยก็ต้องเปลี่ยนไป แล้วเริ่มนับความยาวใหม่นั่นเอง
จากแนวคิดข้างต้นสามารถ เขียนเป็น pseudocode ได้ดังนี้