ผลต่างระหว่างรุ่นของ "418531 ภาคต้น 2552/โจทยปัญหาการค้นหาด้วยพละกำลังเยี่ยงควายถึก/เฉลยข้อ 5"
Aoy (คุย | มีส่วนร่วม) |
Aoy (คุย | มีส่วนร่วม) |
||
(ไม่แสดง 1 รุ่นระหว่างกลางโดยผู้ใช้คนเดียวกัน) | |||
แถว 8: | แถว 8: | ||
จากแนวคิดข้างต้น เขียนเป็น pseudocode ได้ดังนี้ | จากแนวคิดข้างต้น เขียนเป็น pseudocode ได้ดังนี้ | ||
+ | <geshi lang="c"> | ||
ABS(x,y) // เป็น subroutine ที่ใช้ในการหาผลต่างระหว่างเลขสองตัว | ABS(x,y) // เป็น subroutine ที่ใช้ในการหาผลต่างระหว่างเลขสองตัว | ||
− | + | { | |
− | + | if (x-y < 0) | |
− | + | return ((-1).(x-y)) | |
+ | return(x-y) | ||
+ | } | ||
+ | </geshi> | ||
+ | <geshi lang="c"> | ||
CHECK_ARITH(A,i,j) // เป็น subroutine ที่ใช้ในการตรวจสอบว่าลำดับย่อยในช่วง i ถึง j เป็นลำดับเลขคณิตหรือไม่ | CHECK_ARITH(A,i,j) // เป็น subroutine ที่ใช้ในการตรวจสอบว่าลำดับย่อยในช่วง i ถึง j เป็นลำดับเลขคณิตหรือไม่ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | { | ||
+ | k = ABS(A[i],A[i+1]) // กำหนดค่า k เป็นผลต่างระหว่างเลขตัวแรกกับตัวที่สองในลำดับย่อย | ||
+ | for k=i+1 to k<j | ||
+ | { | ||
+ | if(ABS(A[k],A[k+1] != k)) // ถ้ามีตัวเลขของตัวในลำดับย่อยมีผลต่างไม่เท่ากับ k ก็บอกว่าลำดับย่อยในช่วง i ถึง j นี้ไม่เป็นลำดับเลขคณิต | ||
+ | retrun (0) | ||
+ | else | ||
+ | return(1) | ||
+ | } | ||
+ | } | ||
+ | </geshi> | ||
+ | |||
+ | <geshi lang="c"> | ||
LONGESTINTERVAL(A,n,maxi,maxj) | LONGESTINTERVAL(A,n,maxi,maxj) | ||
− | + | { | |
− | + | max = -10000000 | |
− | + | for i=o to i=n | |
− | + | { | |
− | + | for j=i to j = n | |
− | + | { | |
− | + | flag=CHECK_ARITH(A,i,j) // ตรวจสอบว่าลำดับย่อยที่กำลังพิจารณาเป็นลำดับเลขคณิตหรือไม่ | |
− | + | if (flag) // ถ้าเป็นลำดับเลขคณิต | |
+ | { | ||
+ | if ((j-i+1)> max) // ตรวจสอบดูว่าความยาวของลำดับเลขคณิตนี้ยาวกว่าลำดับเลขคณิตก่อนหน้าที่เคยเจอหรือไม่ | ||
+ | maxi = i // ถ้าใช่ก็เปลี่ยนไปจำลำดับเลขคณิตที่ยาวกว่าลำดับก่อนหน้านี้ | ||
+ | maxj = j | ||
+ | } // end if flag | ||
+ | } // end for j | ||
+ | } // end for i | ||
+ | } // end pseudocode | ||
+ | </geshi> | ||
== ข้อย่อย 2 == | == ข้อย่อย 2 == | ||
แถว 35: | แถว 57: | ||
จากแนวคิดข้างต้นสามารถ เขียนเป็น pseudocode ได้ดังนี้ | จากแนวคิดข้างต้นสามารถ เขียนเป็น pseudocode ได้ดังนี้ | ||
+ | <geshi lang="c"> | ||
GENERATE(A,D,n,maxi,maxj) | GENERATE(A,D,n,maxi,maxj) | ||
− | + | { | |
− | + | l = 0, count = 0 | |
− | + | for k=0 to k<n // ทำการหาค่าผลต่างของสมาชิกในลำดับย่อยเก็บไว้ในอะเรย์ D | |
− | + | { | |
− | + | D[l] = ABS(A[k],A[k+1]) | |
− | + | l <-- l + 1 | |
− | + | } | |
− | + | for k=0 to k<n | |
− | + | { | |
− | + | if (D[k] = D[k+1]) // ถ้าผลต่างของ A[k] กับ A[k+1] เท่ากับผลต่างของ A[k+1] กับ A[k+2] | |
+ | { | ||
+ | count = count + 1 | ||
+ | maxi = k | ||
+ | maxj = k+2 | ||
+ | } | ||
+ | count = 0 | ||
+ | } | ||
+ | } | ||
+ | </geshi> |
รุ่นแก้ไขปัจจุบันเมื่อ 09:41, 4 กันยายน 2552
ข้อย่อย 1
อินพุต: ลำดับของจำนวนเต็มที่มีความยาว
เอาพุต: ลำดับย่อยของลำดับที่เป็นอินพุตที่มีความยาวมากที่สุด และเป็นลำดับเลขคณิต
แนวคิด ข้อนี้วัตถุที่เราต้องการหาคือลำดับย่อย ตำแหน่งเริ่มต้น และตำแหน่งสุดท้าย ในลำดับที่ให้มา โดยที่ หรือคือช่วงที่เราเรียนกันไปแล้วในห้องเรียนนั่นเอง และเงื่อนไข คือต้องเป็นลำดับเลขคณิต(ที่มีความยาวมากที่สุด) ดังนั้นสิ่งที่อัลกอริทึมของเราต้องทำ คือหยิบช่วงแต่ละช่วง (ลำดับย่อยแต่ละลำดับ) มาดู แล้วดูว่ามันเป็นลำดับเลขคณิตหรือไม่ ถ้าใช่ก็ตรวจสอบอีกว่า มันเป็นลำดับเลขคณิตที่เราเคยรู้จักและยาวกว่าหรือไม่ ถ้ายาวกว่าก็เปลี่ยนมาจำลำดับย่อยใหม่นี้
จากแนวคิดข้างต้น เขียนเป็น pseudocode ได้ดังนี้
<geshi lang="c"> ABS(x,y) // เป็น subroutine ที่ใช้ในการหาผลต่างระหว่างเลขสองตัว {
if (x-y < 0) return ((-1).(x-y)) return(x-y)
} </geshi>
<geshi lang="c"> CHECK_ARITH(A,i,j) // เป็น subroutine ที่ใช้ในการตรวจสอบว่าลำดับย่อยในช่วง i ถึง j เป็นลำดับเลขคณิตหรือไม่
{
k = ABS(A[i],A[i+1]) // กำหนดค่า k เป็นผลต่างระหว่างเลขตัวแรกกับตัวที่สองในลำดับย่อย for k=i+1 to k<j { if(ABS(A[k],A[k+1] != k)) // ถ้ามีตัวเลขของตัวในลำดับย่อยมีผลต่างไม่เท่ากับ k ก็บอกว่าลำดับย่อยในช่วง i ถึง j นี้ไม่เป็นลำดับเลขคณิต retrun (0) else return(1) }
} </geshi>
<geshi lang="c"> LONGESTINTERVAL(A,n,maxi,maxj) {
max = -10000000 for i=o to i=n { for j=i to j = n { flag=CHECK_ARITH(A,i,j) // ตรวจสอบว่าลำดับย่อยที่กำลังพิจารณาเป็นลำดับเลขคณิตหรือไม่ if (flag) // ถ้าเป็นลำดับเลขคณิต { if ((j-i+1)> max) // ตรวจสอบดูว่าความยาวของลำดับเลขคณิตนี้ยาวกว่าลำดับเลขคณิตก่อนหน้าที่เคยเจอหรือไม่ maxi = i // ถ้าใช่ก็เปลี่ยนไปจำลำดับเลขคณิตที่ยาวกว่าลำดับก่อนหน้านี้ maxj = j } // end if flag } // end for j } // end for i
} // end pseudocode </geshi>
ข้อย่อย 2
โจทย์ต้องการให้อัลกอริทึมทำงานได้ในเวลา นั่นคือ พออ่านอินพุตเสร็จแล้วต้องทำการตรวจสอบได้ด้วยว่าเป็นลำดับเลขคณิตหรือไม่ พร้อมทั้งต้องหาช่วง(ลำดับย่อย)ที่เป็นลำดับเลขคณิตที่ยาวที่สุดได้ด้วย ซึ่งการทำงานดังกล่าวจะทำได้ เมื่อเราทำการคำนวณผลต่างระหว่างสมาชิกในลำดับไปพร้อม ๆ กับการหยิบสมาชิกแต่ละตัวมาดูนั่นเอง นั่นคือ เมื่อเราพิจารณาสมาชิกตัวที่หนึ่ง เราก็หาผลต่างของมันกับสมาชิกตัวที่สอง เมื่อพิจารณาสมาชิกตัวที่สอง เราก็หาผลต่างของมันกับสมาชิกตัวที่สาม ทำแบบนี้ไปเรื่อย ๆ เมื่อพิจารณาครบทุกตัว ตอนนี้เราก็จะมีผลต่างระหว่างสมาชิกทุกตัวในลำดับอินพุตแล้ว จากนั้นวิธีการตรวจสอบว่าเป็นลำดับเลขคณิตที่ยาวที่สุดหรือไม่ก็ทำได้โดยดูว่าค่าผลต่างพวกนี้เปลี่ยนหรือไม่ ถ้ายังไม่เปลี่ยนก็นับว่าเป็นลำดับเลขคณิตไปเรื่อย ๆ แต่ถ้าเปลี่ยนก็แสดงว่าไม่เป็นลำดับเลขคณิตแล้ว ตัวแปรที่ใช้ในการจำว่าตำแหน่งเริ่มของลำดับย่อยก็ต้องเปลี่ยนไป แล้วเริ่มนับความยาวใหม่นั่นเอง
จากแนวคิดข้างต้นสามารถ เขียนเป็น pseudocode ได้ดังนี้
<geshi lang="c"> GENERATE(A,D,n,maxi,maxj) {
l = 0, count = 0 for k=0 to k<n // ทำการหาค่าผลต่างของสมาชิกในลำดับย่อยเก็บไว้ในอะเรย์ D { D[l] = ABS(A[k],A[k+1]) l <-- l + 1 } for k=0 to k<n { if (D[k] = D[k+1]) // ถ้าผลต่างของ A[k] กับ A[k+1] เท่ากับผลต่างของ A[k+1] กับ A[k+2] { count = count + 1 maxi = k maxj = k+2 } count = 0 }
} </geshi>