ผลต่างระหว่างรุ่นของ "Probstat/week4 practice 2"
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) |
||
(ไม่แสดง 4 รุ่นระหว่างกลางโดยผู้ใช้คนเดียวกัน) | |||
แถว 15: | แถว 15: | ||
2. Find Var(''Y''). | 2. Find Var(''Y''). | ||
+ | |||
+ | == Binomial random variables == | ||
+ | |||
+ | Let random variable ''X'' be a binomial random variable with parameters ''n'' and ''p'', i.e., let ''X'' be the number of successful outcomes we get by performing experiment that has success probability ''p'' for ''n'' times independently. | ||
+ | |||
+ | For <math>1\leq i\leq n</math>, define a random variable ''X<sub>i</sub>'' to be 1 if the ''i''-th experiment is successful and 0 otherwise. | ||
+ | |||
+ | 1. Find <math>\mathrm{E}[X_i^2]</math>. | ||
+ | |||
+ | 2. Find <math>\mathrm{E}[X_i\cdot X_j]</math>. | ||
+ | |||
+ | 3. From the definition, we have that <math>X=\sum_{i=1}^n X_i</math>. Rewrite <math>X^2</math> in terms of <math>X_i^2</math> and <math>X_i\cdot X_j</math>. | ||
+ | |||
+ | 4. Use the expansion in (3) to find <math>\mathrm{E}[X^2]</math> and <math>\mathrm{Var}(X)</math>. |
รุ่นแก้ไขปัจจุบันเมื่อ 01:59, 16 กันยายน 2557
- This is part of probstat.
Useful properties
1. For a random variable X and constants a and c, prove that E[aX+c]=aE[X] + c.
2. Let X be a random variable and , prove that .
Dinner dish experiment
Recall the dinner experiment: n people are having a dinner at the table with a rotating turntable. Each person orders one different dish and gets her/his order exactly in front of her/him. They decide to randomly rotate the turntable so that each one of them will get a random dish. Let random variable Y be the number of people who get their own dish after the random rotation.
1. Find .
We define the variance Var(Y) of a random variable Y whose expectation to be .
2. Find Var(Y).
Binomial random variables
Let random variable X be a binomial random variable with parameters n and p, i.e., let X be the number of successful outcomes we get by performing experiment that has success probability p for n times independently.
For , define a random variable Xi to be 1 if the i-th experiment is successful and 0 otherwise.
1. Find .
2. Find .
3. From the definition, we have that . Rewrite in terms of and .
4. Use the expansion in (3) to find and .