ผลต่างระหว่างรุ่นของ "01204211-58"
ไปยังการนำทาง
ไปยังการค้นหา
Jittat (คุย | มีส่วนร่วม) |
Jittat (คุย | มีส่วนร่วม) |
||
(ไม่แสดง 28 รุ่นระหว่างกลางโดยผู้ใช้คนเดียวกัน) | |||
แถว 5: | แถว 5: | ||
* 9/3: [[01204211/activity3 induction 1|Activity 3 - Induction 1]] | * 9/3: [[01204211/activity3 induction 1|Activity 3 - Induction 1]] | ||
* 9/10: [[01204211/activity4 counting 1|Activity 4 - Counting 1]] | * 9/10: [[01204211/activity4 counting 1|Activity 4 - Counting 1]] | ||
− | * | + | * 10/4: [[01204211/homework5 counting 2|Homework 5 - Counting 2]] |
+ | * 10/8: [[01204211/homework6 number theory 1|Homework 6 - Number theory 1]] | ||
+ | * 10/15: [[01204211/activity7 number theory 2|Activity 7 - Number theory 2]] -- '''Due date: 14 Dec 2015''' | ||
+ | * 11/26: [[01204211/activity8 polynomials and graph theory 1|Activity 8 - Polynomials and Graph theory 1]] -- '''Due date: 14 Dec 2015''' | ||
+ | * 12/9: [[01204211/homework9 graph theory 2|Homework 9 - Graph theory 2]] -- '''Due date: 18 Dec 2015''' | ||
== Topics == | == Topics == | ||
แถว 12: | แถว 16: | ||
! Week/number !! Topics !! Handouts !! Links | ! Week/number !! Topics !! Handouts !! Links | ||
|- | |- | ||
− | | 1/1 || Introduction, Propositions || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/01-intro-propositions.handout.pdf handout1] || | + | | 1/1 || Introduction, Propositions || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/01-intro-propositions.handout.pdf handout1] || |
|- | |- | ||
− | | 1/2 || Quantifiers || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/02-intro-quantifiers.handout.pdf handout2] || Clips: [https://www.youtube.com/watch?v=-G3J4NZykJ8 part1], [https://www.youtube.com/watch?v=Wy6ajUTDklE part2], [https://www.youtube.com/watch?v=ViTXSU8JUfs part3], [https://www.youtube.com/watch?v=ls-bXIp_MTk part4] | + | | 1/2 || Quantifiers || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/02-intro-quantifiers.handout.pdf handout2] || Clips: [https://www.youtube.com/watch?v=-G3J4NZykJ8 part1], [https://www.youtube.com/watch?v=Wy6ajUTDklE part2], [https://www.youtube.com/watch?v=ViTXSU8JUfs part3], [https://www.youtube.com/watch?v=ls-bXIp_MTk part4] |
|- | |- | ||
− | | 2/1 || Inference rules<br>Proof techniques 1 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/03-proofs-inference.handout.pdf handout3]<br>[https://github.com/jittat/01204211-discrete-math-slides/raw/master/04-proof-techniques1.handout.pdf handout4] || | + | | 2/1 || Inference rules<br>Proof techniques 1 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/03-proofs-inference.handout.pdf handout3]<br>[https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/04-proof-techniques1.handout.pdf handout4] || |
|- | |- | ||
− | | 2/2 || Proof techniques 2 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/05-proof-techniques2.handout.pdf handout5] || Clips: [https://www.youtube.com/watch?v=VSBeAMdeBIw part1], [https://www.youtube.com/watch?v=nnicL9EPfPQ part2], [https://www.youtube.com/watch?v=_cmIP0f9DxQ part3] | + | | 2/2 || Proof techniques 2 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/05-proof-techniques2.handout.pdf handout5] || Clips: [https://www.youtube.com/watch?v=VSBeAMdeBIw part1], [https://www.youtube.com/watch?v=nnicL9EPfPQ part2], [https://www.youtube.com/watch?v=_cmIP0f9DxQ part3] |
|- | |- | ||
− | | 3/1 || Induction 1 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/06-induction1.handout.pdf handout6] || | + | | 3/1 || Induction 1 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/06-induction1.handout.pdf handout6] || |
|- | |- | ||
− | | 3/2 || Induction 2 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/07-induction2.handout.pdf handout7] || Clips: [https://www.youtube.com/watch?v=F2Nd1KzxO7o part1], [https://www.youtube.com/watch?v=J165s7HS_SU part2], [https://www.youtube.com/watch?v=VPvmU1dtMVw part3] | + | | 3/2 || Induction 2 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/07-induction2.handout.pdf handout7] || Clips: [https://www.youtube.com/watch?v=F2Nd1KzxO7o part1], [https://www.youtube.com/watch?v=J165s7HS_SU part2], [https://www.youtube.com/watch?v=VPvmU1dtMVw part3] |
|- | |- | ||
− | | 4/1 || Induction 3<br>Counting 1 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/08-induction3.handout.pdf handout8]<br>[https://github.com/jittat/01204211-discrete-math-slides/raw/master/09-counting1.handout.pdf handout9] || | + | | 4/1 || Induction 3<br>Counting 1 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/08-induction3.handout.pdf handout8]<br>[https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/09-counting1.handout.pdf handout9] || |
|- | |- | ||
− | | 4/2 || Counting 2 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/10-counting2.handout.pdf handout10] || Clips: [https://www.youtube.com/watch?v=4XPt-03Zzow part1], [https://www.youtube.com/watch?v=zl8LstzmGKk part2], [https://www.youtube.com/watch?v=URKCDKTTKk8 part3], [https://www.youtube.com/watch?v=hIG_UplAnJI part4] | + | | 4/2 || Counting 2 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/10-counting2.handout.pdf handout10] || Clips: [https://www.youtube.com/watch?v=4XPt-03Zzow part1], [https://www.youtube.com/watch?v=zl8LstzmGKk part2], [https://www.youtube.com/watch?v=URKCDKTTKk8 part3], [https://www.youtube.com/watch?v=hIG_UplAnJI part4] |
|- | |- | ||
− | | 5/1 || Counting 3 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/11-counting3.handout.pdf handout11] || | + | | 5/1 || Counting 3 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/11-counting3.handout.pdf handout11] || |
|- | |- | ||
− | | 5/2 || The pigeonhole principle and the birthday problem || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/12-pigeonholes.handout.pdf handout12] || Clips: [https://www.youtube.com/watch?v=s-pj57ERVQ0 part1], [https://www.youtube.com/watch?v=rHbbbMpbL_4 part2], [https://www.youtube.com/watch?v=YC3YDunIq1U part3], [https://www.youtube.com/watch?v=QA7EM1Sb9B8 part4] | + | | 5/2 || The pigeonhole principle and the birthday problem || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/12-pigeonholes.handout.pdf handout12] || Clips: [https://www.youtube.com/watch?v=s-pj57ERVQ0 part1], [https://www.youtube.com/watch?v=rHbbbMpbL_4 part2], [https://www.youtube.com/watch?v=YC3YDunIq1U part3], [https://www.youtube.com/watch?v=QA7EM1Sb9B8 part4] |
|- | |- | ||
− | | || || || | + | | 6/1 || Binomial Coefficients 1 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/13-binomialcoeff1.handout.pdf handout13] || |
+ | |- | ||
+ | | 6/2 || Binomial Coefficients 2<br>Fibonacci sequence || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/14-binomialcoeff2.handout.pdf handout14]<br>[https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/15-fibonacci.handout.pdf handout15] || Clips (binomial coefficients 2): [https://www.youtube.com/watch?v=5KB6G8vuYQo part1], [https://www.youtube.com/watch?v=9WJqOj4f4UY part2] | ||
+ | |- | ||
+ | | 7/1 || Primality testing 1 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/16-primality-testing1.handout.pdf handout16] || | ||
+ | |- | ||
+ | | 7/2 || Primality testing 2 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/17-primality-testing2.handout.pdf handout17] || | ||
+ | |- | ||
+ | | 8/1 || Primality testing 3 || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/year-2558-slides/18-primality-testing3.handout.pdf handout18] || | ||
+ | |- | ||
+ | | 8/2 || Modular arithmetic 1 || || External materials: | ||
+ | * [https://inst.eecs.berkeley.edu/~cs70/fa15/notes/n6.pdf Lecture notes] from Berkeley CS70 Fall15 | ||
+ | * [http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/MIT6_042JF10_chap04.pdf Chapter 4] sections 4.5 - 4.6 from MIT 6.042 OCW | ||
+ | |- | ||
+ | | 9/1 || Modular arithmetic 2 (RSA) || || External materials: [https://inst.eecs.berkeley.edu/~cs70/fa15/notes/n6.pdf Lecture notes] from Berkeley CS70 Fall15, | ||
+ | |- | ||
+ | | 9/2 || Modular arithmetic 3 (Modular multiplicative inverses) || || Clips: [https://www.youtube.com/watch?v=n38hYhOHnRI part1], [https://www.youtube.com/watch?v=g1UnRjMctYg part2], [https://www.youtube.com/watch?v=ljjxReTMmbY part3], [https://www.youtube.com/watch?v=NPGPUGXYcXE part4]<br>External materials [http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/MIT6_042JF10_chap04.pdf Chapter 4] sections 4.1 - 4.3 from MIT 6.042 OCW | ||
+ | |- | ||
+ | | 10/1 || Polynomials || || External materials: [https://inst.eecs.berkeley.edu/~cs70/fa15/notes/n8.pdf Lecture notes] from Berkeley CS70 Fall15 | ||
+ | |- | ||
+ | | 10/2 || (no class - commencements) || || | ||
+ | |- | ||
+ | | 11/1 || Graphs 1 - Introduction & degrees || || Materials from LPV Ch.7 sections 7.1 - 7.2. Available in [http://www.cs.elte.hu/~lovasz/dmbook.ps this free manuscript] as Ch.9, sections 9.1 - 9.2. | ||
+ | |- | ||
+ | | 11/2 || (cancelled) || || | ||
+ | |- | ||
+ | | 12/1 || Graphs 2 - Eulerian walks|| || Materials from LPV Ch.7.3. | ||
+ | |- | ||
+ | | 12/2 || (no class - open house) || || | ||
+ | |- | ||
+ | | 13/1 || Graphs 3 - Trees|| || Materials from LPV Ch.8. Available in [http://www.cs.elte.hu/~lovasz/dmbook.ps this free manuscript] as Ch.10. | ||
+ | |- | ||
+ | | 13/2 || Reviews with activities 8 || || | ||
+ | |- | ||
+ | | 14/1 || (cancelled) || || | ||
+ | |- | ||
+ | | 14/2 || Graphs 4 - Euler's formula || || Materials from LPV Ch.12. | ||
+ | |- | ||
+ | | 15/1 || Graphs 5 - Matching || || Materials from LPV Ch.10. Available in [http://www.cs.elte.hu/~lovasz/dmbook.ps this free manuscript] as Ch.12. | ||
+ | |- | ||
+ | | 15/2 || (make-up) Graphs 6 - Coloring || || Materials from LPV Ch.13. | ||
|} | |} | ||
+ | |||
+ | === Reviews (คลิปทบทวน) === | ||
+ | * ทบทวน polynomial และ interpolation: [https://www.youtube.com/watch?v=8uqVTFPqYjY part1], [https://www.youtube.com/watch?v=G_gQXn7_J2k part2], [https://www.youtube.com/watch?v=VD9OkoC58aE part3], [https://www.youtube.com/watch?v=dFR3m2tYzMw part4], [https://www.youtube.com/watch?v=yKqmXAsONqE part5], [https://www.youtube.com/watch?v=ZfIGFgejpFQ part6] | ||
+ | * ทบทวนศัพท์ที่ใช้ในส่วน graph theory: [https://www.youtube.com/watch?v=UNlfCtx3EcU clip] | ||
== Additional links == | == Additional links == |
รุ่นแก้ไขปัจจุบันเมื่อ 20:18, 6 สิงหาคม 2561
Announcements
Activities
- 8/20: Activity 1 - Logic 1
- 8/27: Activity 2 - Logic and Proofs
- 9/3: Activity 3 - Induction 1
- 9/10: Activity 4 - Counting 1
- 10/4: Homework 5 - Counting 2
- 10/8: Homework 6 - Number theory 1
- 10/15: Activity 7 - Number theory 2 -- Due date: 14 Dec 2015
- 11/26: Activity 8 - Polynomials and Graph theory 1 -- Due date: 14 Dec 2015
- 12/9: Homework 9 - Graph theory 2 -- Due date: 18 Dec 2015
Topics
Week/number | Topics | Handouts | Links |
---|---|---|---|
1/1 | Introduction, Propositions | handout1 | |
1/2 | Quantifiers | handout2 | Clips: part1, part2, part3, part4 |
2/1 | Inference rules Proof techniques 1 |
handout3 handout4 |
|
2/2 | Proof techniques 2 | handout5 | Clips: part1, part2, part3 |
3/1 | Induction 1 | handout6 | |
3/2 | Induction 2 | handout7 | Clips: part1, part2, part3 |
4/1 | Induction 3 Counting 1 |
handout8 handout9 |
|
4/2 | Counting 2 | handout10 | Clips: part1, part2, part3, part4 |
5/1 | Counting 3 | handout11 | |
5/2 | The pigeonhole principle and the birthday problem | handout12 | Clips: part1, part2, part3, part4 |
6/1 | Binomial Coefficients 1 | handout13 | |
6/2 | Binomial Coefficients 2 Fibonacci sequence |
handout14 handout15 |
Clips (binomial coefficients 2): part1, part2 |
7/1 | Primality testing 1 | handout16 | |
7/2 | Primality testing 2 | handout17 | |
8/1 | Primality testing 3 | handout18 | |
8/2 | Modular arithmetic 1 | External materials:
| |
9/1 | Modular arithmetic 2 (RSA) | External materials: Lecture notes from Berkeley CS70 Fall15, | |
9/2 | Modular arithmetic 3 (Modular multiplicative inverses) | Clips: part1, part2, part3, part4 External materials Chapter 4 sections 4.1 - 4.3 from MIT 6.042 OCW | |
10/1 | Polynomials | External materials: Lecture notes from Berkeley CS70 Fall15 | |
10/2 | (no class - commencements) | ||
11/1 | Graphs 1 - Introduction & degrees | Materials from LPV Ch.7 sections 7.1 - 7.2. Available in this free manuscript as Ch.9, sections 9.1 - 9.2. | |
11/2 | (cancelled) | ||
12/1 | Graphs 2 - Eulerian walks | Materials from LPV Ch.7.3. | |
12/2 | (no class - open house) | ||
13/1 | Graphs 3 - Trees | Materials from LPV Ch.8. Available in this free manuscript as Ch.10. | |
13/2 | Reviews with activities 8 | ||
14/1 | (cancelled) | ||
14/2 | Graphs 4 - Euler's formula | Materials from LPV Ch.12. | |
15/1 | Graphs 5 - Matching | Materials from LPV Ch.10. Available in this free manuscript as Ch.12. | |
15/2 | (make-up) Graphs 6 - Coloring | Materials from LPV Ch.13. |
Reviews (คลิปทบทวน)
- ทบทวน polynomial และ interpolation: part1, part2, part3, part4, part5, part6
- ทบทวนศัพท์ที่ใช้ในส่วน graph theory: clip
Additional links
The outline of the course is inspired mainly by CS70 at Berkeley (See the recent course homepage.) More over, the course borrows a lot of exposition from other sources listed below.
- CS70: Discrete mathematics and probability theoryat Berkeley
- Mathematics for Computer Science at MIT OCW.
- Lovasz, Pelikan, Vesztergombi. Discrete Mathematics: Elementary and Beyond. Springer, 2003. See Lovasz and Vesztergombi's lecture notes (dmbook.ps)
- Matousek and Nestril. Invitation to Discrete Mathematics. 2nd Edition. Oxford Press, 2008.
- Rosen. Discrete Mathematics and Its Applications. Mcgraw-Hill.