ผลต่างระหว่างรุ่นของ "ตอนที่ 1: Levin's Search กับการแยกตัวประกอบของจำนวน"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 4: แถว 4:
 
Leonid Levin
 
Leonid Levin
 
''
 
''
[[ภาพ:Example.jpg]]
+
[[ภาพ:levin.jpg]]
  
 
ปัญหาการแยกตัวประกอบจำนวนก็คือปัญหาที่เรามีจำนวนจำนวนหนึ่งที่เป็นจำนวนประกอบ n เราจะสามารถหาวิธีการที่มีประสิทธิภาพที่สุดในการแยกตัวประกอบของจำนวนนั้นได้อย่างไร หากลองมองกลับไปวิธีที่ใช้สอนเด็กประถม เราอาจจะทำได้ดังนี้ ลองหารจำนวนตั้งแต่ 1, 2, 3 จนกระทั่งพบจำนวนแรกที่หารจำนวนนั้นลงตัว เท่านี้ก็แยกตัวประกอบสำเร็จ  
 
ปัญหาการแยกตัวประกอบจำนวนก็คือปัญหาที่เรามีจำนวนจำนวนหนึ่งที่เป็นจำนวนประกอบ n เราจะสามารถหาวิธีการที่มีประสิทธิภาพที่สุดในการแยกตัวประกอบของจำนวนนั้นได้อย่างไร หากลองมองกลับไปวิธีที่ใช้สอนเด็กประถม เราอาจจะทำได้ดังนี้ ลองหารจำนวนตั้งแต่ 1, 2, 3 จนกระทั่งพบจำนวนแรกที่หารจำนวนนั้นลงตัว เท่านี้ก็แยกตัวประกอบสำเร็จ  
แถว 10: แถว 10:
 
วิธีนี้อาจจะใช้ได้ผลดีหากตัวเลขมีค่าไม่มากนัก แต่ในแง่ของนักวิทยาการคอมพิวเตอร์แล้ว วิธีนี้ถือว่าสิ้นเปลืองเวลาและพลังงานชิวิตของคอมพิวเตอร์เป็นอย่างมาก ในการคิดความเร็วในการคำนวณของคอมพิวเตอร์นั้น เราจะคิดความเร็วเทียบกับขนาดของข้อมูลที่ป้อนเข้า หาก n มีค่าเป็น 3,000,013 ขนาดของข้อมูลที่ป้อนเข้าก็คือ 7 หลักเท่านั้น แต่วิธีการแยกตัวประกอบดังกล่าวอาจใช้เวลาการทำงานนับหมื่นรอบ เพื่อหาจำนวนดังกล่าว ดังนั้นแล้ววิธีนี้จึงถือว่าไม่มีประสิทธิภาพ  
 
วิธีนี้อาจจะใช้ได้ผลดีหากตัวเลขมีค่าไม่มากนัก แต่ในแง่ของนักวิทยาการคอมพิวเตอร์แล้ว วิธีนี้ถือว่าสิ้นเปลืองเวลาและพลังงานชิวิตของคอมพิวเตอร์เป็นอย่างมาก ในการคิดความเร็วในการคำนวณของคอมพิวเตอร์นั้น เราจะคิดความเร็วเทียบกับขนาดของข้อมูลที่ป้อนเข้า หาก n มีค่าเป็น 3,000,013 ขนาดของข้อมูลที่ป้อนเข้าก็คือ 7 หลักเท่านั้น แต่วิธีการแยกตัวประกอบดังกล่าวอาจใช้เวลาการทำงานนับหมื่นรอบ เพื่อหาจำนวนดังกล่าว ดังนั้นแล้ววิธีนี้จึงถือว่าไม่มีประสิทธิภาพ  
  
ในด้านวิทยาการคอมพิวเตอร์นั้น ปัญหาการแยกตัวประกอบถือว่าเป็นปัญหาที่ยากมาก การเข้ารหัสเกือบทั้งหมดในปัจจุบันถูกสร้างขึ้นมาโดยสมมติฐานที่ว่า ผู้ที่ต้องการขโมยข้อมูลไม่สามารถถอดรหัสได้ เพราะฉะนั้น หากมีผู้ใดค้นพบวิธีการแยกตัวประกอบอย่างมีประสิทธิภาพ ระบบความปลอดภัยในคอมพิวเตอร์เกือบทั้งหมดก็จะกลายเป็นไม่ปลอดภัยทันที  
+
ในด้านวิทยาการคอมพิวเตอร์นั้น ปัญหาการแยกตัวประกอบถือว่าเป็นปัญหาที่ยากมาก การเข้ารหัสเกือบทั้งหมดในปัจจุบันถูกสร้างขึ้นมาโดยสมมติฐานที่ว่า ผู้ที่ต้องการขโมยข้อมูลไม่สามารถถอดรหัสได้ เพราะฉะนั้น หากมีผู้ใดค้นพบวิธีการแยกตัวประกอบอย่างมีประสิทธิภาพ ระบบความปลอดภัยในคอมพิวเตอร์เกือบทั้งหมดก็จะกลายเป็นไม่ปลอดภัยทันที
  
 
== Levin's search ==  
 
== Levin's search ==  

รุ่นแก้ไขเมื่อ 06:53, 21 พฤศจิกายน 2549

เกริ่น

"Only math nerds would call 2500 finite" Leonid Levin Levin.jpg

ปัญหาการแยกตัวประกอบจำนวนก็คือปัญหาที่เรามีจำนวนจำนวนหนึ่งที่เป็นจำนวนประกอบ n เราจะสามารถหาวิธีการที่มีประสิทธิภาพที่สุดในการแยกตัวประกอบของจำนวนนั้นได้อย่างไร หากลองมองกลับไปวิธีที่ใช้สอนเด็กประถม เราอาจจะทำได้ดังนี้ ลองหารจำนวนตั้งแต่ 1, 2, 3 จนกระทั่งพบจำนวนแรกที่หารจำนวนนั้นลงตัว เท่านี้ก็แยกตัวประกอบสำเร็จ

วิธีนี้อาจจะใช้ได้ผลดีหากตัวเลขมีค่าไม่มากนัก แต่ในแง่ของนักวิทยาการคอมพิวเตอร์แล้ว วิธีนี้ถือว่าสิ้นเปลืองเวลาและพลังงานชิวิตของคอมพิวเตอร์เป็นอย่างมาก ในการคิดความเร็วในการคำนวณของคอมพิวเตอร์นั้น เราจะคิดความเร็วเทียบกับขนาดของข้อมูลที่ป้อนเข้า หาก n มีค่าเป็น 3,000,013 ขนาดของข้อมูลที่ป้อนเข้าก็คือ 7 หลักเท่านั้น แต่วิธีการแยกตัวประกอบดังกล่าวอาจใช้เวลาการทำงานนับหมื่นรอบ เพื่อหาจำนวนดังกล่าว ดังนั้นแล้ววิธีนี้จึงถือว่าไม่มีประสิทธิภาพ

ในด้านวิทยาการคอมพิวเตอร์นั้น ปัญหาการแยกตัวประกอบถือว่าเป็นปัญหาที่ยากมาก การเข้ารหัสเกือบทั้งหมดในปัจจุบันถูกสร้างขึ้นมาโดยสมมติฐานที่ว่า ผู้ที่ต้องการขโมยข้อมูลไม่สามารถถอดรหัสได้ เพราะฉะนั้น หากมีผู้ใดค้นพบวิธีการแยกตัวประกอบอย่างมีประสิทธิภาพ ระบบความปลอดภัยในคอมพิวเตอร์เกือบทั้งหมดก็จะกลายเป็นไม่ปลอดภัยทันที

Levin's search

บทสรุป