ผลต่างระหว่างรุ่นของ "204512/บรรยาย 2"
ไปยังการนำทาง
ไปยังการค้นหา
| แถว 1: | แถว 1: | ||
| + | == เกริ่นนำ == | ||
| + | |||
หลักการของ Divide and Conquer Algorithm ประกอบไปด้วย 3 ส่วนดังนี้ | หลักการของ Divide and Conquer Algorithm ประกอบไปด้วย 3 ส่วนดังนี้ | ||
:1.แตกย่อยปัญหาเป็นชิ้นเล็ก หลายชิ้น | :1.แตกย่อยปัญหาเป็นชิ้นเล็ก หลายชิ้น | ||
| แถว 6: | แถว 8: | ||
ดังจะเห็นได้จากปัญหาทั้งในชีวิตประจำวัน และปัญหาทางทฤษฎีคอมพิวเตอร์ สามารถเปรียบเทียบกรรมวิธี Divide and Conquer Algorithm กับ Lagacy Algorithm ได้ว่ามีประสิทธิ์ภาพต่างกันมากน้อยเพียงใด ซึ่งวิธีที่เปรียบเทียบเป็นที่นิยมโดยทั่วไปคือการหา Big O Notation มาเปรียบเทียบกัน | ดังจะเห็นได้จากปัญหาทั้งในชีวิตประจำวัน และปัญหาทางทฤษฎีคอมพิวเตอร์ สามารถเปรียบเทียบกรรมวิธี Divide and Conquer Algorithm กับ Lagacy Algorithm ได้ว่ามีประสิทธิ์ภาพต่างกันมากน้อยเพียงใด ซึ่งวิธีที่เปรียบเทียบเป็นที่นิยมโดยทั่วไปคือการหา Big O Notation มาเปรียบเทียบกัน | ||
---- | ---- | ||
| + | |||
| + | == การวิเคราะห์เปรียบเทียบ Algorithm โดยการหา Big O Notation == | ||
| + | |||
| + | ---- | ||
| + | |||
| + | == ตัวอย่างปัญหา ที่ใช้กรรมวิธีแก้ไขแบบ Divide & Conquer == | ||
| + | |||
| + | === Merge Sort === | ||
| + | |||
| + | === Fast Furier Transform === | ||
| + | |||
| + | ---- | ||
| + | |||
| + | == Links ที่น่าสนใจ == | ||
รุ่นแก้ไขเมื่อ 10:52, 16 มิถุนายน 2550
เนื้อหา
เกริ่นนำ
หลักการของ Divide and Conquer Algorithm ประกอบไปด้วย 3 ส่วนดังนี้
- 1.แตกย่อยปัญหาเป็นชิ้นเล็ก หลายชิ้น
- 2.ทำการแก้ปัญหาย่อยเหล่านี้ด้วยวิธีการที่คล้ายกัน
- 3.คำตอบสุดท้ายหาได้จากการสรุปคำตอบทั้งหมดของทุกปัญหาย่อย
ดังจะเห็นได้จากปัญหาทั้งในชีวิตประจำวัน และปัญหาทางทฤษฎีคอมพิวเตอร์ สามารถเปรียบเทียบกรรมวิธี Divide and Conquer Algorithm กับ Lagacy Algorithm ได้ว่ามีประสิทธิ์ภาพต่างกันมากน้อยเพียงใด ซึ่งวิธีที่เปรียบเทียบเป็นที่นิยมโดยทั่วไปคือการหา Big O Notation มาเปรียบเทียบกัน