ผลต่างระหว่างรุ่นของ "418531 ภาคต้น 2552/โจทยปัญหาการค้นหาด้วยพละกำลังเยี่ยงควายถึก/เฉลยข้อ 5"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 9: แถว 9:
  
 
ABS(x,y) // เป็น subroutine ที่ใช้ในการหาผลต่างระหว่างเลขสองตัว
 
ABS(x,y) // เป็น subroutine ที่ใช้ในการหาผลต่างระหว่างเลขสองตัว
:1if (x-y < 0)
+
:1:if (x-y < 0)
::2 return ((-1).(x-y))
+
:2:: return ((-1).(x-y))
:3 return(x-y)
+
:3: return(x-y)
  
 
CHECK_ARITH(A,i,j) // เป็น subroutine ที่ใช้ในการตรวจสอบว่าลำดับย่อยในช่วง i ถึง j เป็นลำดับเลขคณิตหรือไม่
 
CHECK_ARITH(A,i,j) // เป็น subroutine ที่ใช้ในการตรวจสอบว่าลำดับย่อยในช่วง i ถึง j เป็นลำดับเลขคณิตหรือไม่
:1 k = ABS(A[i],A[i+1]) // กำหนดค่า k เป็นผลต่างระหว่างเลขตัวแรกกับตัวที่สองในลำดับย่อย
+
: k = ABS(A[i],A[i+1]) // กำหนดค่า k เป็นผลต่างระหว่างเลขตัวแรกกับตัวที่สองในลำดับย่อย
:2 for k=i+1 to k<j
+
: for k=i+1 to k<j
::3 if(ABS(A[k],A[k+1] != k)) // ถ้ามีตัวเลขของตัวในลำดับย่อยมีผลต่างไม่เท่ากับ k ก็บอกว่าลำดับย่อยในช่วง i ถึง j นี้ไม่เป็นลำดับเลขคณิต
+
:: if(ABS(A[k],A[k+1] != k)) // ถ้ามีตัวเลขของตัวในลำดับย่อยมีผลต่างไม่เท่ากับ k ก็บอกว่าลำดับย่อยในช่วง i ถึง j นี้ไม่เป็นลำดับเลขคณิต
:::4 retrun (0)
+
::: retrun (0)
::5 return(1)
+
:: return(1)
  
 
LONGESTINTERVAL(A,n,maxi,maxj)
 
LONGESTINTERVAL(A,n,maxi,maxj)
1:max = -10000000
+
:max = -10000000
2:for i=o to i=n
+
:for i=o to i=n
3:: for j=i to j = n  
+
:: for j=i to j = n  
4:::  flag=CHECK_ARITH(A,i,j) // ตรวจสอบว่าลำดับย่อยที่กำลังพิจารณาเป็นลำดับเลขคณิตหรือไม่
+
:::  flag=CHECK_ARITH(A,i,j) // ตรวจสอบว่าลำดับย่อยที่กำลังพิจารณาเป็นลำดับเลขคณิตหรือไม่
5:::  if (flag) // ถ้าเป็นลำดับเลขคณิต
+
:::  if (flag) // ถ้าเป็นลำดับเลขคณิต
6::::    if ((j-i+1)> max) // ตรวจสอบดูว่าความยาวของลำดับเลขคณิตนี้ยาวกว่าลำดับเลขคณิตก่อนหน้าที่เคยเจอหรือไม่
+
::::    if ((j-i+1)> max) // ตรวจสอบดูว่าความยาวของลำดับเลขคณิตนี้ยาวกว่าลำดับเลขคณิตก่อนหน้าที่เคยเจอหรือไม่
7::::    maxi = i  // ถ้าใช่ก็เปลี่ยนไปจำลำดับเลขคณิตที่ยาวกว่าลำดับก่อนหน้านี้
+
::::    maxi = i  // ถ้าใช่ก็เปลี่ยนไปจำลำดับเลขคณิตที่ยาวกว่าลำดับก่อนหน้านี้
8::::    maxj = j
+
::::    maxj = j
  
 
== ข้อย่อย 2 ==
 
== ข้อย่อย 2 ==

รุ่นแก้ไขเมื่อ 09:15, 18 สิงหาคม 2552

ข้อย่อย 1

อินพุต: ลำดับของจำนวนเต็มที่มีความยาว

เอาพุต: ลำดับย่อยของลำดับที่เป็นอินพุตที่มีความยาวมากที่สุด และเป็นลำดับเลขคณิต

แนวคิด ข้อนี้วัตถุที่เราต้องการหาคือลำดับย่อย ตำแหน่งเริ่มต้น และตำแหน่งสุดท้าย ในลำดับที่ให้มา โดยที่ หรือคือช่วงที่เราเรียนกันไปแล้วในห้องเรียนนั่นเอง และเงื่อนไข คือต้องเป็นลำดับเลขคณิต(ที่มีความยาวมากที่สุด) ดังนั้นสิ่งที่อัลกอริทึมของเราต้องทำ คือหยิบช่วงแต่ละช่วง (ลำดับย่อยแต่ละลำดับ) มาดู แล้วดูว่ามันเป็นลำดับเลขคณิตหรือไม่ ถ้าใช่ก็ตรวจสอบอีกว่า มันเป็นลำดับเลขคณิตที่เราเคยรู้จักและยาวกว่าหรือไม่ ถ้ายาวกว่าก็เปลี่ยนมาจำลำดับย่อยใหม่นี้

จากแนวคิดข้างต้น เขียนเป็น pseudocode ได้ดังนี้

ABS(x,y) // เป็น subroutine ที่ใช้ในการหาผลต่างระหว่างเลขสองตัว

1:if (x-y < 0)
2:: return ((-1).(x-y))
3: return(x-y)

CHECK_ARITH(A,i,j) // เป็น subroutine ที่ใช้ในการตรวจสอบว่าลำดับย่อยในช่วง i ถึง j เป็นลำดับเลขคณิตหรือไม่

k = ABS(A[i],A[i+1]) // กำหนดค่า k เป็นผลต่างระหว่างเลขตัวแรกกับตัวที่สองในลำดับย่อย
for k=i+1 to k<j
if(ABS(A[k],A[k+1] != k)) // ถ้ามีตัวเลขของตัวในลำดับย่อยมีผลต่างไม่เท่ากับ k ก็บอกว่าลำดับย่อยในช่วง i ถึง j นี้ไม่เป็นลำดับเลขคณิต
retrun (0)
return(1)

LONGESTINTERVAL(A,n,maxi,maxj)

max = -10000000
for i=o to i=n
for j=i to j = n
flag=CHECK_ARITH(A,i,j) // ตรวจสอบว่าลำดับย่อยที่กำลังพิจารณาเป็นลำดับเลขคณิตหรือไม่
if (flag) // ถ้าเป็นลำดับเลขคณิต
if ((j-i+1)> max) // ตรวจสอบดูว่าความยาวของลำดับเลขคณิตนี้ยาวกว่าลำดับเลขคณิตก่อนหน้าที่เคยเจอหรือไม่
maxi = i // ถ้าใช่ก็เปลี่ยนไปจำลำดับเลขคณิตที่ยาวกว่าลำดับก่อนหน้านี้
maxj = j

ข้อย่อย 2

โจทย์ต้องการให้อัลกอริทึมทำงานได้ในเวลา นั่นคือ พออ่านอินพุตเสร็จแล้วต้องทำการตรวจสอบได้ด้วยว่าเป็นลำดับเลขคณิตหรือไม่ พร้อมทั้งต้องหาช่วง(ลำดับย่อย)ที่เป็นลำดับเลขคณิตที่ยาวที่สุดได้ด้วย ซึ่งการทำงานดังกล่าวจะทำได้ เมื่อเราทำการคำนวณผลต่างระหว่างสมาชิกในลำดับไปพร้อม ๆ กับการหยิบสมาชิกแต่ละตัวมาดูนั่นเอง นั่นคือ เมื่อเราพิจารณาสมาชิกตัวที่หนึ่ง เราก็หาผลต่างของมันกับสมาชิกตัวที่สอง เมื่อพิจารณาสมาชิกตัวที่สอง เราก็หาผลต่างของมันกับสมาชิกตัวที่สาม ทำแบบนี้ไปเรื่อย ๆ เมื่อพิจารณาครบทุกตัว ตอนนี้เราก็จะมีผลต่างระหว่างสมาชิกทุกตัวในลำดับอินพุตแล้ว จากนั้นวิธีการตรวจสอบว่าเป็นลำดับเลขคณิตที่ยาวที่สุดหรือไม่ก็ทำได้โดยดูว่าค่าผลต่างพวกนี้เปลี่ยนหรือไม่ ถ้ายังไม่เปลี่ยนก็นับว่าเป็นลำดับเลขคณิตไปเรื่อย ๆ แต่ถ้าเปลี่ยนก็แสดงว่าไม่เป็นลำดับเลขคณิตแล้ว ตัวแปรที่ใช้ในการจำว่าตำแหน่งเริ่มของลำดับย่อยก็ต้องเปลี่ยนไป แล้วเริ่มนับความยาวใหม่นั่นเอง

จากแนวคิดข้างต้นสามารถ เขียนเป็น pseudocode ได้ดังนี้

GENERATE(A,D,n,maxi,maxj)

l = 0, count = o
for k=o to k<n // ทำการหาค่าผลต่างของสมาชิกในลำดับย่อยเก็บไว้ในอะเรย์ D
D[l] = ABS(A[k],A[k+1])
l <-- l + 1
for k=o to k<n
if (D[k] = D[k+1]) // ถ้าผลต่างของ A[k] กับ A[k+1] เท่ากับผลต่างของ A[k+1] กับ A[k+2]
count = count + 1
maxi = k
maxj = k+2
count = 0