ผลต่างระหว่างรุ่นของ "204512/บรรยาย 1"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
(ซซ)
แถว 83: แถว 83:
  
 
==ตัวหารร่วมมาก (grestest common divisors)==
 
==ตัวหารร่วมมาก (grestest common divisors)==
 +
ตัวหารร่วมมาก (gcd) ของ  a และ b คือจำนวนเต็มที่มากที่สุดที่หาร a และ b ลงตัวแทนด้วย gcd(a,b)
 +
 +
;Thm: ให้จำนวนเต็ม a ,m    a จะมี inverse การคูณ modulo m เมื่อและต่อเมื่อ gcd(a,m) = 1
 +
;Proof: (<=) สมมุติ gcd(a,m) = 1
 +
:พิจารณา
 +
:: 0 mod m
 +
:: a mod m
 +
:: 2a mod m
 +
:: 3a mod m
 +
:: . . .
 +
::(m-1)a mod m
 +
 +
;claim 1: จำนวนเหล่านี้ไม่เท่ากันเลย
 +
----
 +
จาก claim 1 จะมีจำนวนเต็ม b ที่อยู่ระหว่าง 0 <= b <= m-1 ที่ b*a mod m = 1 เนื่องจากมีจำนวน m จำนวนไม่ซ้ำกันจากค่าที่เป็นไปได้ระหว่าง 0 ถึง m-1
 +
 +
;Proof Claim1:
 +
สมมุติให้มีจำนวนเต็ม i =/= j ที่ 0 <= i ,j<= m-1
 +
ที่  i*a mod m = j*a mod m
 +
จะได้ i*a \eqv j*a (mod m)
 +
หรือ m| i*a - j*a  => m|(i-j)*a
 +
นั้นคือมีจำนวนเต็ม k ที่
 +
mk = a (i-j)
 +
k = a(i-j) / m
 +
จาก gcd(a,m ) =1 จะได้ว่า m ต้องหาร (i -j) ลงตัว
 +
แต่ (i-j) มีค่าได้ตั้งแต่ 1 ถึง m-1 (0; i=/=j)ซึ่งน้อยกว่า m
 +
ซึ่งเป็นไปไม่ได้ []
 +
:
 +
Proof by Contradiction
 +
(P) สมมุติ ~p => F
 +
:หรือ ~(~P) or ~F \eqv P
 +
 +
 +
(=>)  สมมุติ a มี inverse การคูณ modulo m และ gcd(a,m) = 1
  
 
==การกระจายความลับ (Secret Sharing)==
 
==การกระจายความลับ (Secret Sharing)==

รุ่นแก้ไขเมื่อ 13:13, 7 มิถุนายน 2550

การบรรยายครั้งแรกจะเป็นการแนะนำวิชา และแสดงตัวอย่างการพิสูจน์ที่น่าสนใจ โดยมีเป้าหมายเพื่อที่จะพัฒนาระบบการกระจายความลับ (secret sharing)

คณิตศาสตร์มอดุโล

Definition 1: จะกล่าวว่าจำนวนเต็ม a หารจำนวนเต็ม b ลงตัว ถ้ามีจำนวนเต็ม k ที่ ak = b เขียนแทนด้วย a|b

นิยาม : จำนวนเต็มบวก p ที่ p > 1 และมีตัวประกอบสองจำนวนคือ 1 และตัวมันเองเรียกว่า จำนวนเฉพาะ

นิยาม : a mod b = r เมื่อ 0 <= r < b ถ้ามีจำนวนเต็ม k ที่ bk+r = a

ตัวอย่าง

10mod3 =1
-10 mod 3 =2 ; 3(-4)+2 = -10

นิยาม : a \eqv b (mod m) ถ้า a mod m = b mod m

proposition 1: ถ้า a \eqv b (mod m)

iff m|a-b

Proof: p<=>q \eqv (p=>q)and(q=>p)

(~p=>~q)

(=>)

(<=)

เนื่องจาก m|a-b เราจะได้ว่ามีจำนวนเต็ม k ที่

mk = a-b

b = a -mk

b mod m = a mod m - mk mod m

b mod m = a mod m

Propostition : ถ้า a \eqv b (mod m ) และ c \eqv d(mod m) แล้ว

1. a+c \eqv b+d (mod m)

2. ac \eqv bd (mod m)

3. a-c \eqv b-d (mod m)

proof :

a \eqv b (mod m)=> m|a-b
c \eqv d (mod m)=> m|c-d
m|(a+c)-(b+d) => a+c \eqv b+d (mod m)


ac \eqv ad (mod m) => c \eqv d (mod m)

นิยาม: สำหรับถ้า ab \eqv 1 (mod m) จะเรียก b ว่าเป็น mutiplicative inverse modulo m ของ a^-1

เช่น

3*3 \eqv 1 (mod 4)
3 = 3^-1 (mod 4)

(mod4)

2/3 = 7
x*3 \eqv 2 (mod 4)
x*3*\inv 3 \eqv 2*\inv 3 (mod 4)
x \eqv 2*3 = 6 =2 (mod 4)

(mod 7)

2/3 = 7
\inv 3 (mod 7) \eqv 5 (mod 7)
x \eqv 2*5 \eqv 10 \eqv 3 (mod 7)

ถ้ามี inverse สามารถหาผลหารได้โดยเอา inverse ไปคูณ

4/3 = 4* \inv 3 (mod m)


ตัวอย่าง ๆ


ตัวหารร่วมมาก (grestest common divisors)

ตัวหารร่วมมาก (gcd) ของ a และ b คือจำนวนเต็มที่มากที่สุดที่หาร a และ b ลงตัวแทนด้วย gcd(a,b)

Thm
ให้จำนวนเต็ม a ,m a จะมี inverse การคูณ modulo m เมื่อและต่อเมื่อ gcd(a,m) = 1
Proof
(<=) สมมุติ gcd(a,m) = 1
พิจารณา
0 mod m
a mod m
2a mod m
3a mod m
. . .
(m-1)a mod m
claim 1
จำนวนเหล่านี้ไม่เท่ากันเลย

จาก claim 1 จะมีจำนวนเต็ม b ที่อยู่ระหว่าง 0 <= b <= m-1 ที่ b*a mod m = 1 เนื่องจากมีจำนวน m จำนวนไม่ซ้ำกันจากค่าที่เป็นไปได้ระหว่าง 0 ถึง m-1

Proof Claim1

สมมุติให้มีจำนวนเต็ม i =/= j ที่ 0 <= i ,j<= m-1 ที่ i*a mod m = j*a mod m จะได้ i*a \eqv j*a (mod m) หรือ m| i*a - j*a => m|(i-j)*a นั้นคือมีจำนวนเต็ม k ที่ mk = a (i-j) k = a(i-j) / m จาก gcd(a,m ) =1 จะได้ว่า m ต้องหาร (i -j) ลงตัว แต่ (i-j) มีค่าได้ตั้งแต่ 1 ถึง m-1 (0; i=/=j)ซึ่งน้อยกว่า m ซึ่งเป็นไปไม่ได้ []

Proof by Contradiction (P) สมมุติ ~p => F

หรือ ~(~P) or ~F \eqv P


(=>) สมมุติ a มี inverse การคูณ modulo m และ gcd(a,m) = 1

การกระจายความลับ (Secret Sharing)