ผลต่างระหว่างรุ่นของ "204512/บรรยาย 8"
Top (คุย | มีส่วนร่วม) |
Top (คุย | มีส่วนร่วม) |
||
แถว 1: | แถว 1: | ||
{{หัวคำบรรยาย|204512}} | {{หัวคำบรรยาย|204512}} | ||
− | การบรรยายครั้งนี้จะกล่าวถึงการแก้ปัญหา | + | การบรรยายครั้งนี้จะกล่าวถึงการแก้ปัญหา network flows โดยใช้แนวคิดเกี่ยวกับ blocking flows ซึ่งนำไปสู่อัลกอริทึมของ Dinic |
==Blocking Flows== | ==Blocking Flows== |
รุ่นแก้ไขเมื่อ 06:45, 7 สิงหาคม 2550
บันทึกคำบรรยายวิชา 204512 นี้ เป็นบันทึกที่นิสิตเขียนขึ้น เนื้อหาโดยมากยังไม่ผ่านการตรวจสอบอย่างละเอียด การนำไปใช้ควรระมัดระวัง
การบรรยายครั้งนี้จะกล่าวถึงการแก้ปัญหา network flows โดยใช้แนวคิดเกี่ยวกับ blocking flows ซึ่งนำไปสู่อัลกอริทึมของ Dinic
Blocking Flows
สำหรับการนิยาม blocking flows เราจะต้องให้นิยาม saturated edge ก่อน
- นิยาม 8.1
- ให้ network G และ flow f จะกล่าวว่า edge e saturated (อิ่มตัว) ถ้า f ใช้ capacity ของ e จนหมด นั่นคือ
และเราสามารถนิยาม blocking flows ได้ดังนี้
- นิยาม 8.2
- เราจะเรียก flow f ว่าเป็น blocking flow ถ้า ทุกๆ s-t path มี saturated edge อย่างน้อยหนึ่ง edge
จะเห็นว่าถ้า f เป็น blocking flow แล้ว เราไม่สามารถเพิ่มขนาดของ flow โดยการดัน flow เพิ่มตาม path ใน G ได้อีก เนื่องจากทุก path มี saturated edge อยู่ แต่เราอาจเพิ่มขนาดของ flow ได้โดยการลด flow บน edge บางเส้น และเพิ่มไปยัง edge อื่น พิจารณาตัวอย่างต่อไปนี้
- ตัวอย่าง 8.1
- ให้กราฟมีทิศทางดังรูปที่ 8.1 โดย edge ทุกๆเส้นมี capacity เท่ากับ 1
รูปที่ 8.1 ตัวอย่าง blocking flow
พิจารณา flow f ที่มีขนาดเท่ากับ 1 ตามลูกศรสีส้มในรูป จะเห็นว่า edge ทั้งสามเส้นที่มี flow f ไหลผ่าน เป็น saturated edge ทั้งสิ้น และทุกๆ path จาก s ไปยัง t จะมี saturated edge อย่างน้อยหนึ่งเส้น ซึ่งทำให้เราไม่สามารถเพิ่ม flow ตาม path เหล่านี้ได้อีก ดังนั้น f ในตัวอย่างนี้เป็น blocking flow