ผลต่างระหว่างรุ่นของ "01204211-61"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 9: แถว 9:
 
! Week !! Topics !! Handouts !! Activities !! Links  
 
! Week !! Topics !! Handouts !! Activities !! Links  
 
|-  
 
|-  
| 1 || Introduction, Propositions, Quantifiers || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/01-intro-propositions.handout.pdf handout1]<br>[https://github.com/jittat/01204211-discrete-math-slides/raw/master/02-intro-quantifiers.handout.pdf handout2] || ||
+
| 1 || Introduction, Propositions, Quantifiers || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/01-intro-propositions.handout.pdf handout1]<br>[https://github.com/jittat/01204211-discrete-math-slides/raw/master/02-intro-quantifiers.handout.pdf handout2] || [https://theory.cpe.ku.ac.th/wiki/images/01204211-exercises-1-1.pdf ex-1-1], [https://theory.cpe.ku.ac.th/wiki/images/01204211-exercises-1-2.pdf ex-1-2] ||
 
|-  
 
|-  
 
| 2 || Inference rules, Proof techniques || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/03-proofs-inference.handout.pdf handout3] ||  ||
 
| 2 || Inference rules, Proof techniques || [https://github.com/jittat/01204211-discrete-math-slides/raw/master/03-proofs-inference.handout.pdf handout3] ||  ||

รุ่นแก้ไขเมื่อ 16:18, 13 สิงหาคม 2561

ประกาศ

แบบฝึกหัด/การบ้าน

เนื้อหา

Week Topics Handouts Activities Links
1 Introduction, Propositions, Quantifiers handout1
handout2
ex-1-1, ex-1-2
2 Inference rules, Proof techniques handout3
3 Induction 1
4 Induction 2, Counting 1
5 Counting 2
6 The pigeonhole principle and the birthday problem, Binomial Coefficients, Fibonacci sequence
7 Primality testing
8 Polynomials
9 Graphs 1
10 Graphs 2
11 Linear algebra 1: vector spaces
12 Linear algebra 2: matrices and linear systems
13 Linear algebra 3: linear transformations
14 Linear algebra 4: solutions of linear transformations
15 Linear algebra 5: eigensystems

ลิงก์เพิ่มเติม

  • รายวิชานี้เมื่อปีการศึกษา 2558
  • CS70: Discrete mathematics and probability theoryat Berkeley
  • Mathematics for Computer Science at MIT OCW.
  • Lovasz, Pelikan, Vesztergombi. Discrete Mathematics: Elementary and Beyond. Springer, 2003. See Lovasz and Vesztergombi's lecture notes (dmbook.ps)
  • Matousek and Nestril. Invitation to Discrete Mathematics. 2nd Edition. Oxford Press, 2008.
  • Rosen. Discrete Mathematics and Its Applications. Mcgraw-Hill.