ผลต่างระหว่างรุ่นของ "Foundations of data science"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 41: แถว 41:
 
|| 2, 3
 
|| 2, 3
 
||
 
||
 +
* [https://www.youtube.com/watch?v=m_9v3CjaT20&list=PLii-CvAgf-8hqc3qpihz3SZmMTAOLWIGk&index=11 03-1: ตัวอย่าง Dimension reduction และ random projection กับ Johnson-Lindenstrauss lemma]
 +
* [https://www.youtube.com/watch?v=tAYxmTR4a0U&list=PLii-CvAgf-8hqc3qpihz3SZmMTAOLWIGk&index=12 03-2: ตัวอย่างการแยก Gaussian ใน high dimension และการใช้ SVD]
 +
* [https://www.youtube.com/watch?v=xP_a_H9AswU&list=PLii-CvAgf-8hqc3qpihz3SZmMTAOLWIGk&index=13 03-3: ตัวอย่าง SVD ในการหา low-rank approximation กับรูปภาพ]
 +
* [https://www.youtube.com/watch?v=P5ptwLz8UQY&list=PLii-CvAgf-8hqc3qpihz3SZmMTAOLWIGk&index=14 03-4: Random projection และ Johnson-Lindenstrauss Lemma]
 +
* [https://www.youtube.com/watch?v=ap85jhOPJUw&list=PLii-CvAgf-8hqc3qpihz3SZmMTAOLWIGk&index=15 03-5: การแยก Gaussian ใน high dimension]
 +
* [https://www.youtube.com/watch?v=SBLF11MtxoQ&list=PLii-CvAgf-8hqc3qpihz3SZmMTAOLWIGk&index=16 03-6: แนะนำ Singular value decomposition และทบทวนเนื้อหาพีชคณิตเชิงเส้น]
 
||
 
||
 
[https://gitlab.com/jittat/foundations-ds-64-notes/-/blob/main/lect-03-1-hd-jl-gaussian-sep.pdf notes-03-1]<br>
 
[https://gitlab.com/jittat/foundations-ds-64-notes/-/blob/main/lect-03-1-hd-jl-gaussian-sep.pdf notes-03-1]<br>

รุ่นแก้ไขเมื่อ 00:51, 23 สิงหาคม 2564

หน้านี้สำหรับเก็บเอกสารและการบ้านรายวิชา 01204515 Foundations of Data Science ปีการศึกษา 2564 ภาคต้น

รายวิชานี้จะใช้หนังสือ Foundations of Data Science (Blum, A., Hopcroft, J., & Kannan, R. (2020). Foundations of Data Science. Cambridge: Cambridge University Press. doi:10.1017/9781108755528) เป็นหนังสือหลัก (ดาวน์โหลดจากโฮมเพจของ Hopcroft)

การบ้าน

อ้างอิงจากหนังสือ ฉบับวันที่ 2 March 2019

  • Homework 1 (due 2 Sep.): 12.6, 12.15, 2.1(1), 2.5, 2.9, 2.27 (Programming), 2.32 (Programming), 2.14 (optional), 2.23 (optional)
    • Hint: 2.9 พิจารณา 1 มิติก่อน (d=1) นิยามของ variance คืออะไร, จากนั้นค่อยพิจารณา d มิติ

เนื้อหา

Week Topics Book chapter Clips Notes
1 Review of probability theory. Law of large numbers. Markov's Inequality. Chebyshev's Inequality 2

notes-01-1
notes-01-2

2 More review of probability theory: binomial, Poisson, and Gaussian random variables. High dimensional unit balls. 2

notes-02-1
notes-02-2

3 Gaussians in high dimensions. Random projection and the Johnson-Lindenstrauss Lemma. Separating Gaussians. Introduction to SVD and review of linear algebra. 2, 3

notes-03-1
notes-03-2

ลิงก์