การจำลองบอร์ด MCU เป็นอุปกรณ์ USB
ที่ผ่านมานั้นเราใช้พอร์ท USB เป็นเพียงแหล่งจ่ายพลังงานและโปรแกรมแฟลชเท่านั้น วิกินี้อธิบายถึงขั้นตอนการทำให้ไมโครคอนโทรลเลอร์จำลองตัวเองเป็นอุปกรณ์ USB ความเร็วต่ำ เพื่อที่จะสามารถสื่อสารกับโปรแกรมที่ทำงานอยู่บนเครื่องคอมพิวเตอร์ได้
ในที่นี้เราจะใช้โอเพนซอร์สไลบรารีชื่อ V-USB (เดิมเรียกว่า AVR-USB) ที่พัฒนาโดยบริษัท Objective Development โดยทำให้บอร์ด MCU ของเราทำงานเป็นอุปกรณ์ที่อยู่ในกลุ่ม custom class device ซึ่งจัดเป็นอุปกรณ์ USB ที่ไม่สังกัดคลาสใด โดยซอฟต์แวร์ฝั่งคอมพิวเตอร์จะอยู่ภายใต้ความควบคุมของเราทั้งหมด
นอกเหนือจาก custom class device แล้ว ไลบรารี V-USB ยังรองรับการโปรแกรมเฟิร์มแวร์ให้สังกัดคลาสอื่นได้อีกหลายคลาส อาทิเช่น HID (Human Interface Device) ซึ่งอยู่ในกลุ่มเดียวกับอุปกรณ์จำพวกแป้นพิมพ์ เมาส์ จอยสติ๊ก และเกมแพด
เนื้อหา
ขั้นตอนการใช้งานไลบรารี V-USB
- ดาวน์โหลดซอร์สโค้ดจาก Objective Development
- แตกไฟล์ .tar.gz ที่ดาวน์โหลดมาโดยใช้คำสั่ง
tar zxf vusb-20100715.tar.gz
- คัดลอกไดเรคตอรี
usbdrv/
ที่อยู่ในไดเรคตอรีvusb-20100715/
ไปวางในไดเรคตอรีโปรเจ็คของตน - ภายในไดเรคตอรีโปรเจ็คของตนเอง ย้ายไฟล์
usbdrv/usbconfig-prototype.h
มาวางไว้ด้านนอก และเปลี่ยนชื่อให้เป็นusbconfig.h
mv usbdrv/usbconfig-prototype.h ./usbconfig.h
- ไฟล์นี้จะเก็บข้อมูลการตั้งค่าเกี่ยวกับอุปกรณ์ USB ที่จะให้ไมโครคอนโทรลเลอร์จำลองตัวเองขึ้นมา
- ในไฟล์หลักของโปรเจ็ค เรียกใช้คำสั่ง
#include
ต่อไปนี้ไว้ที่ตอนต้นของโปรแกรม
#include <avr/io.h> #include <avr/interrupt.h> /* for sei() */ #include <util/delay.h> /* for _delay_ms() */ #include <avr/pgmspace.h> /* required by usbdrv.h */ #include "usbdrv.h"
- ในส่วนของฟังก์ชัน
main()
ต้องมีโครงสร้างหลักดังนี้ (สามารถใส่โค้ดอื่นเพิ่มได้ตามที่ต้องการ)
int main() { usbInit(); usbDeviceDisconnect(); _delay_ms(300); /* fake USB disconnect for > 250 ms */ usbDeviceConnect(); sei(); /* enable interrupts */ while (1) /* main event loop */ { usbPoll(); /* คำสั่งนี้ต้องถูกเรียกอย่างน้อยที่สุดทุก ๆ 50ms */ } return 0; }
- นิยามฟังก์ชัน
usbFunctionSetup
เพื่อประมวลผลข้อมูลที่รับมาจากเครื่องคอมพิวเตอร์ผ่านทางพอร์ท USB
usbMsgLen_t usbFunctionSetup(uint8_t data[8]) { ; }
- ฟังก์ชันนี้จะถูกเรียกทำงานโดยอัตโนมัติจากฟังก์ชัน
usbPoll
เมื่อทางฝั่งคอมพิวเตอร์ส่งคำร้องขอผ่านมาทางพอร์ท USB หัวข้อ #ตัวอย่างโปรแกรม แสดงตัวอย่างการการเขียนฟังก์ชันนี้เอาไว้
การคอมไพล์และลิ้งค์โปรแกรมรวมกับ V-USB
สร้าง Makefile ต่อไปนี้เพื่อคอมไพล์โปรแกรมและดำเนินการลิ้งค์เข้ากับไลบรารี V-USB ซึ่งตัวอย่าง Makefile นี้สมมติว่าไฟล์หลักของโปรเจ็คคือ main.c
MCU=atmega168 F_CPU=12000000L TARGET=main.hex OBJS=usbdrv/usbdrv.o usbdrv/usbdrvasm.o CFLAGS=-Wall -Os -DF_CPU=$(F_CPU) -Iusbdrv -I. -mmcu=$(MCU) all: $(TARGET) flash: $(TARGET) avrdude -p $(MCU) -c usbasp -U flash:w:$(TARGET) %.hex: %.elf avr-objcopy -j .text -j .data -O ihex $< $@ %.elf: %.o $(OBJS) avr-gcc $(CFLAGS) -o $@ $? %.o: %.c avr-gcc -c $(CFLAGS) -o $@ $< %.o: %.S avr-gcc $(CFLAGS) -x assembler-with-cpp -c -o $@ $< clean: rm -f $(OBJS) rm -f $(TARGET) rm -f *~
หากดูในกฎที่ระบุกลไกการสร้างไฟล์ main.elf
ขึ้นมาจาก main.o
จะเห็นว่าบรรทัดที่มีการเรียกใช้ avr-gcc
ได้มีการนำเอา $(OBJS)
(ซึ่งได้แก่ไฟล์ usbdrv/usbdrv.o
และ usbdrv/usbdrvasm.o
) ลิ้งค์รวมเข้าไปด้วย ในที่นี้ตัวแปรพิเศษ $@
แทน target ซึ่งหมายถึง main.elf
ส่วนตัวแปรพิเศษ $?
แทนรายการของ dependency ทั้งหมด นั่นคือไฟล์ main.elf
นั้นถูกสร้างขึ้นโดยการที่ make เรียกคำสั่งด้านล่างนี้อัตโนมัติ
avr-gcc -Wall -Os -DF_CPU=12000000L -Iusbdrv -I. -mmcu=atmega168 -o main.elf main.o usbdrv/usbdrv.o usbdrv/usbdrvasm.o
โครงสร้างของคำร้องขอ USB ที่รับจากฝั่งคอมพิวเตอร์
ในสถาปัตยกรรม USB นั้นการสื่อสารจะถูกเริ่มจากการที่ฝั่งคอมพิวเตอร์ (ฝั่งโฮสท์) ส่งคำร้องขอ (USB Request) ไปยังฝั่งอุปกรณ์ USB เสมอไม่ว่าจะมีการอ่านข้อมูลจากอุปกรณ์ USB หรือเขียนข้อมูลไปยังอุปกรณ์ USB ก็ตาม ข้อมูลคำร้องขอมีโครงสร้างตามที่นิยามไว้ในไฟล์ usbdrv/usbdrv.h
ดังนี้
typedef struct usbRequest{ uchar bmRequestType; /* 1 ไบท์ */ uchar bRequest; /* 1 ไบท์ */ usbWord_t wValue; /* 2 ไบท์ */ usbWord_t wIndex; /* 2 ไบท์ */ usbWord_t wLength; /* 2 ไบท์ */ }usbRequest_t;
bmRequestType
ประกอบด้วยฟิลด์ย่อย 3 ฟิลด์ดังต่อไปนี้
- บิต 7 ทิศทางการส่งข้อมูล (Data Phase Transfer Direction)
- 0 = จากคอมพิวเตอร์ไปอุปกรณ์ USB (Host to Device)
- 1 = จากอุปกรณ์ USB มายังคอมพิวเตอร์ (Device to Host)
- บิต 6..5 ประเภทคำร้องขอ (Type)
- 0 = Standard
- 1 = Class
- 2 = Vendor
- ฟังก์ชัน
usbFunctionSetup
ที่เราต้องเขียนขึ้นนั้นจะถูกเรียกใช้เมื่อค่าในฟิลด์ Type นี้มีค่า 2 (Vendor) เท่านั้น
- บิต 4..0 ผู้รับ (Recipient)
- 0 = Device
- 1 = Interface
- 2 = Endpoint
- 3 = Other
bRequest
ระบุหมายเลขคำร้องขอ คำร้องขอตามมาตรฐานของ USB นั้นมีประเภทเป็น Standard ซึ่งจะถูกประมวลผลจากไลบรารี V-USB อัตโนมัติ เราจึงไม่ต้องสนใจในส่วนนี้ ส่วนที่เราต้องรับผิดชอบคือคำร้องขอแบบ Vendor ซึ่งต้องถูกออกแบบไว้ล่วงหน้าแล้วว่าอุปกรณ์ USB ของเราจะรองรับคำร้องขอหมายเลขอะไรบ้าง โดยในฟังก์ชันusbFunctionSetup
ของเราต้องประมวลผลคำร้องขอเหล่านี้ได้ถูกต้องwValue
และwIndex
ทั้งคู่เป็นฟิลด์ที่ไม่มีความหมายใดในกรณีที่คำร้องขอเป็นแบบ Vendor ดังนั้นเราจึงมีอิสระเต็มที่ในการใช้งานฟิลด์ทั้งคู่นี้เป็นตัวส่งรายละเอียดของคำร้องขอ ซึ่งส่งได้สูงสุด 4 ไบท์wLength
กำหนดขนาดของข้อมูลเพิ่มเติมที่จะส่งจากฝั่งโฮสท์หรือจากอุปกรณ์ USB หากไม่มีข้อมูลเพิ่มเติม ค่านี้จะถูกเซ็ตเป็นศูนย์
ดูรายละเอียดเพิ่มเติมได้จาก USB in a NutShell
ตัวอย่างโปรแกรม
- โหลดไฟล์ usb-example.tgz ซึ่งเก็บไฟล์ทั้งหมดที่ใช้ในตัวอย่างนี้
เพื่อให้เห็นภาพของการใช้งานไลบรารี V-USB มากขึ้น เราลองสร้างตัวอย่างเฟิร์มแวร์อย่างง่ายขึ้นมาพร้อมทั้งใช้ภาษาไพธอนทดลองสั่งงานจากฝั่งคอมพิวเตอร์ ในที่นี้เราจะให้ตัวเฟิร์มแวร์จำลองตัวเป็นอุปกรณ์ USB ที่รองรับการสั่งงานจากโฮสท์ 2 คำร้องขอ ดังนี้
- คำร้องขอ SET_LED สั่งให้ LED ดวงที่ระบุติดหรือดับ มีรายละเอียดของคำร้องขอดังนี้
- กำหนดให้หมายเลขคำร้องขอ (request number) คือ 0
- ส่งรายละเอียดมาให้ 2 ไบท์ ไบท์แรกระบุตำแหน่งของ LED บนบอร์ดพ่วง (0, 1 หรือ 2) ส่วนไบท์ที่สองระบุว่าจะให้ LED ดวงดังกล่าวติดหากมีค่า 0 หรือดับหากมีค่าอื่นที่ไม่ใช่ศูนย์ เนื่องจากข้อมูลมีขนาดเพียงสองไบท์ เราจะใส่ข้อมูลนี้ลงไปในฟิลด์
wValue
ที่ถูกส่งไปพร้อมกับคำร้องขอโดยตรง - แม้ไม่มีข้อมูลอื่นเพิ่มเติมส่งจากคอมพิวเตอร์ไปยังอุปกรณ์ USB แต่เราจะระบุทิศทางการไหลของข้อมูลไว้เป็น Host to Device
- คำร้องขอ GET_SWITCH สั่งให้บอร์ด MCU รายงานสถานะการกดปุ่มสวิตช์กลับมา มีรายละเอียดของคำร้องขอดังนี้
- กำหนดให้หมายเลขคำร้องขอ (request number) คือ 1
- ทิศทางการไหลของข้อมูลเป็น Device to Host
- รับข้อมูลกลับมา 1 ไบท์ บอกสถานะของสวิตช์ (0 คือไม่ถูกกด 1 คือถูกกด)
การตั้งค่าให้อุปกรณ์ USB
เปิดไฟล์ usbconfig.h
เพื่อปรับค่าให้สอดคล้องกับโปรเจ็ค
- VID/PID: อุปกรณ์ USB ทุกตัวจะต้องถูกกำหนดค่า Vendor ID (VID) และ Product ID (PID) ให้ ซึ่งแต่ละตัวเลขมีขนาด 16 บิต ในโปรเจ็คนี้ให้กำหนดค่า VID และ PID ให้เป็น 0x16c0 และ 0x05dc ตามลำดับ โดยดูให้แน่ใจว่าในไฟล์
usbconfig.h
มีบรรทัดเหล่านี้
#define USB_CFG_VENDOR_ID 0xc0, 0x16 /* VID = 0x16c0 */ : #define USB_CFG_DEVICE_ID 0xdc, 0x05 /* PID = 0x05dc */
- อ่านหลักเกณฑ์การตั้งค่า VID/PID เพิ่มเติมได้จากหัวข้อ #เกี่ยวกับหมายเลข VID/PID
- Vendor Name: กำหนดค่า USB Vendor Name ให้เป็น
cpe.ku.ac.th
โดยเปลี่ยนนิยามของมาโครUSB_CFG_VENDOR_NAME
และUSB_CFG_VENDOR_NAME_LEN
ดังนี้
#define USB_CFG_VENDOR_NAME 'c','p','e','.','k','u','.','a','c','.','t','h' #define USB_CFG_VENDOR_NAME_LEN 12
- Device Name: กำหนดค่า USB Device Name ให้เป็น Practicum Group <หมายเลขกลุ่ม> โดยเปลี่ยนนิยามของมาโคร
USB_CFG_DEVICE_NAME
และUSB_CFG_DEVICE_NAME_LEN
ตัวอย่างเช่น กลุ่ม 99 ให้แก้ไขมาโครดังนี้
#define USB_CFG_DEVICE_NAME 'P','r','a','c','t','i','c','u','m',' ','G','r','o','u','p',' ','9','9' #define USB_CFG_DEVICE_NAME_LEN 18
โปรแกรมฝั่งเฟิร์มแวร์
- เพื่อเป็นแนวปฏิบัติที่ดีในการเขียนโปรแกรม เราจะนิยามคำร้องขอเหล่านี้ไว้ที่ส่วนหัวของ
main.c
ดังนี้
#define VENDOR_RQ_SET_LED 0 #define VENDOR_RQ_GET_SWITCH 1
- เราสร้างฟังก์ชันจัดการอินพุท/เอาท์พุทของพอร์ท D เพื่อความสะดวกในการใช้งานไว้ดังนี้
uint8_t in_d(uint8_t pin) { // กำหนดให้ขาที่ระบุของพอร์ท D ทำหน้าที่เป็นอินพุท DDRD &= ~(1<<pin); // ดึงให้ขามีลอจิก 1 หากขาถูกปล่อยลอยไว้ PORTD |= (1<<pin); // อ่านสถานะลอจิกของขาที่ระบุ return ((PIND & (1<<pin))>>pin); } void out_d(uint8_t pin, uint8_t val) { // กำหนดให้ขาที่ระบุของพอร์ท D ทำหน้าที่เป็นเอาท์พุท DDRD |= 1<<pin; // เซ็ตลอจิกของขาเป็น 1 ถ้า val ไม่ใช่ศูนย์ ไม่เช่นนั้นเซ็ตให้เป็น 0 if (val) PORTD |= 1<<pin; else PORTD &= ~(1<<pin); }
- ภายในฟังก์ชัน
usbFunctionSetup
สร้างโค้ดสำหรับประมวลผลคำร้องขอที่รับมาจากโฮสท์ดังนี้
usbMsgLen_t usbFunctionSetup(uchar data[8]) { usbRequest_t *rq = (void *)data; static uchar dataBuffer[1]; /* ข้อมูลนี้ต้องไม่ถูกเขียนทับหลังจาก usbFunctionSetup รีเทิร์น */ /* ประมวลผลตามหมายเลขคำสั่งที่อยู่ใน bRequest */ if (rq->bRequest == VENDOR_RQ_SET_LED) { uint8_t led_no = rq->wValue.bytes[0]; uint8_t led_val = rq->wValue.bytes[1]; out_d(led_no, !led_val); /* กลับลอจิกเพื่อให้ 1 = ติด 0 = ดับ */ return 0; } else if (rq->bRequest == VENDOR_RQ_GET_SWITCH) { dataBuffer[0] = !in_d(3); /* กลับลอจิกเพื่อให้ 0 = ปล่อย 1 = กด */ usbMsgPtr = dataBuffer; /* ระบุว่าข้อมูลส่งกลับอยู่ใน dataBuffer */ return 1; /* ความยาวข้อมูลส่งกลับเท่ากับ 1 */ } return 0; /* ไม่รู้จักคำร้องขอ ไม่ส่งข้อมูลกลับ */ }
- คอมไพล์เฟิร์มแวร์และอัพโหลดเข้าแฟลชของไมโครคอนโทรลเลอร์ ซึ่งหากได้สร้าง
Makefile
ตามที่อธิบายไว้ข้างต้นไว้เรียบร้อยแล้ว ให้เสียบบอร์ดไมโครคอนโทรลเลอร์เข้ากับพอร์ท USB กดสวิตช์เพื่อเข้าสู่ Bootloader แล้วพิมพ์คำสั่ง
make flash
โปรแกรมฝั่งเครื่องคอมพิวเตอร์
- (สำหรับ Ubuntu Linux) ติดตั้ง PyUSB เพื่อติดต่อกับอุปกรณ์ USB ผ่านภาษาไพธอน
sudo apt-get install python-usb
- (สำหรับ MacOS X) ดาวน์โหลดซอร์สโค้ดของไลบรารี libusb จากที่นี่ จากนั้นแตกไฟล์ออกและใช้คำสั่ง cd เข้าไปในไดเรคตอรี่ที่เก็บไฟล์ จึงคอมไพล์และติดตั้งโดยใช้คำสั่งต่อไปนี้
./configure make sudo make install
- จากนั้นโหลดซอร์สโค้ดของ PyUSB จากที่นี่ แตกไฟล์และติดตั้งโดยใช้คำสั่ง
sudo python setup.py install
- สร้างไฟล์ชื่อ
testusb.py
เรียกใช้ไลบรารี usb และนิยามฟังก์ชันfind_board
เพื่อค้นหาอุปกรณ์ USB ตัวที่เป็นบอร์ด MCU ของเราจากรายการอุปกรณ์ USB ทั้งหมดที่ต่ออยู่กับเครื่อง
import usb def find_board(): for bus in usb.busses(): for dev in bus.devices: if dev.idVendor == 0x16c0 and dev.idProduct == 0x05dc: return dev return None
- สังเกตว่าการค้นหาบอร์ด MCU ของเรานั้นอาศัยค่า VID และ PID ที่ตั้งไว้แต่แรก ดังนั้นอาจเกิดปัญหาขึ้นหากมีการเสียบบอร์ด MCU มากกว่าหนึ่งบอร์ดเข้ากับคอมพิวเตอร์เพราะฟังก์ชัน
find_board
จะคืนอุปกรณ์ที่พบว่ามี VID:PID เป็น 16c0:05dc เป็นตัวแรกเสมอ อย่างไรก็ตาม หากต้องการระบุเอาอุปกรณ์ตัวที่ระบุก็สามารถอาศัยข้อมูลจาก vendor name หรือ device name มากำหนดเงื่อนไขเพิ่ม
- ติดต่อกับบอร์ด MCU ผ่านทางไพธอนเชลล์ โดยเรียกโปรแกรม
testusb.py
แบบอินเทอแรคทีฟ
python -i testusb.py
- หมายเหตุ: หากพบปัญหาเกี่ยวกับสิทธิการเข้าถึงอุปกรณ์ USB ให้ดำเนินตามขั้นตอนที่อธิบายไว้ในเอกสาร การแก้ไขสิทธิการเข้าถึงพอร์ท USB ของบอร์ด MCU
- สร้าง handle เพื่อใช้เป็นทางผ่านในการสื่อสารกับบอร์ด MCU โดยใช้คำสั่งดังนี้
>>> board = find_board() >>> handle = board.open()
- สร้างคำร้องขอสำหรับคำสั่ง SET_LED ซึ่งระบุชนิดของคำร้องเป็นแบบ Vendor คือผู้สร้างอุปกรณ์กำหนดขึ้นมาเอง และระบุว่าคำร้องนี้มีการไหลของข้อมูลแบบ Host to Device
>>> req = usb.TYPE_VENDOR | usb.RECIP_DEVICE | usb.ENDPOINT_OUT
- ส่งคำร้องออกไปยังบอร์ด MCU โดยกำหนดให้หมายเลขคำร้องเป็น 0 (ซึ่งหมายถึง SET_LED) และให้ฟิลด์
value
มีค่าเป็น 0x0102 ซึ่งเฟิร์มแวร์ของเราจะตีความว่าเป็นการสั่งให้ LED หมายเลข 2 บนบอร์ดพ่วงติด การร้องขอครั้งนี้ไม่ได้ส่งข้อมูลใด ๆ ไปเพิ่มเติม จึงให้พารามิเตอร์ buf ของ handle.ControlMsg เป็น None ไป
>>> handle.controlMsg(req, 0, None, value=0x0102)
- ลองให้ LED หมายเลข 2 ดับ และ LED หมายเลข 1 ติดขึ้นมาแทน
>>> handle.controlMsg(req, 0, None, value=0x0002) >>> handle.controlMsg(req, 0, None, value=0x0101)
- ทดลองอ่านสถานะของสวิตช์โดยส่งคำร้องหมายเลข 1 ไปยังบอร์ด MCU
>>> req = usb.TYPE_VENDOR | usb.RECIP_DEVICE | usb.ENDPOINT_IN >>> handle.controlMsg(req, 1, 1) (0,)
- เนื่องจากคำร้องนี้เป็นการขอให้ MCU ส่งข้อมูลกลับ จึงต้องมีการระบุในคำร้องโดยใช้ usb.ENDPOINT_IN
- ในกรณีของการร้องขอข้อมูลจากอุปกรณ์ พารามิเตอร์ buf (พารามิเตอร์ตัวที่สามของเมท็อด controlMsg) เป็นความยาวข้อมูลที่ต้องการร้องขอ ซึ่งเท่ากับหนึ่ง
- ค่าที่เมทอด controlMsg คืนกลับมาจะเป็น tuple ความยาวหนึ่งเช่นกัน
- ทดลองกดสวิตช์บนบอร์ดพ่วง แล้วส่งคำร้องไปยังบอร์ด MCU ใหม่ ผลลัพธ์ที่ได้ควรเป็นดังนี้
>>> handle.controlMsg(req, 1, 1) (1,)
สร้างไพธอนคลาสเพื่อความสะดวกในการใช้งาน
การส่งคำสั่งจากคอมพิวเตอร์ไปยังบอร์ดไมโครคอนโทรลเลอร์ผ่านเมท็อด controlMsg นั่นนอกจากจะไม่สะดวกและเข้าใจยากแล้วยังจะทำให้เกิดความผิดพลาดได้ง่ายเนื่องจากพารามิเตอร์ต่าง ๆ ที่ส่งไปยังบอร์ดจะถูกเข้ารหัสรวมกันไว้ในฟิลด์ value และ index โปรแกรม board.py
ในโค้ดตัวอย่างเป็นการรวมคำสั่งควบคุม LED และอ่านค่าสวิตช์ รวมถึงคำสั่งค้นหาบอร์ดเอาไว้ในคลาสเดียวกันเพื่อความสะดวกในการเรียกใช้ ดังแสดง
import usb #################################### RQ_SET_LED = 0 RQ_GET_SWITCH = 1 #################################### class Board: def __init__(self): #print "Looking for MCU board..." dev = self.find_board() if not dev: raise "MCU board not found!" #print "MCU board found" self.handle = dev.open() def find_board(self): board = None for bus in usb.busses(): for dev in bus.devices: if dev.idVendor == 0x16c0 and dev.idProduct == 0x05dc: return dev return None def set_led(self,pin,val): reqType = usb.TYPE_VENDOR | usb.RECIP_DEVICE | usb.ENDPOINT_OUT self.handle.controlMsg(reqType, RQ_SET_LED, None, value=val*256+pin) def get_switch(self): reqType = usb.TYPE_VENDOR | usb.RECIP_DEVICE | usb.ENDPOINT_IN buf = self.handle.controlMsg(reqType, RQ_GET_SWITCH, 1) return buf[0]
สังเกตว่าเมท็อด __init__
จะดำเนินการค้นหาบอร์ด (ที่รันเฟิร์มแวร์จำลองให้ตัวเองเป็นอุปกรณ์ USB แล้ว) โดยอัตโนมัติหากมีการสร้างอ็อปเจ็กต์จากคลาส Board
>>> from board import Board >>> b = Board()
ซึ่งเราสามารถควบคุมการติดดับของ LED ผ่านอ็อปเจ็กต์นี้ เช่นการสั่งให้ LED ดวงแรก (ดวงที่ 0) ติด ทำได้โดยใช้คำสั่ง
>>> b.set_led(0,1)
หรือหากต้องการตรวจสอบสถานะของสวิตช์ ทำได้โดยใช้คำสั่ง
>>> b.get_switch() 0
เกี่ยวกับหมายเลข VID/PID
ชุดตัวเลข VID/PID ที่กำหนดให้กับอุปกรณ์ USB ไม่ควรตั้งเอาเองตามใจชอบเนื่องจากระบบปฏิบัติการจะอาศัยตัวเลขคู่นี้ในการเลือกซอฟต์แวร์ไดรเวอร์ที่จะมาควบคุมอุปกรณ์ USB
ข้อมูลเพิ่มเติมเกี่ยวกับการกำหนดค่า VID และ PID ให้กับอุปกรณ์ USB รวมถึงหลักเกณฑ์การปฏิบัติในการผลิตอุปกรณ์ USB สู่สาธารณะ สามารถศึกษาเพิ่มเติมได้จากเนื้อหาในไฟล์ vusb-20100715/USB-ID-FAQ.txt
และไฟล์ vusb-20100715/USB-IDs-for-free.txt
ที่แจกจ่ายมากับไฟล์ vusb-20100715.tar.gz
และเอกสาร How to obtain an USB VID/PID for your project
Frnkaly I think that's absolutely good stuff.