Nested sampling manual

จาก Theory Wiki
รุ่นแก้ไขเมื่อ 06:00, 10 เมษายน 2550 โดย Jung (คุย | มีส่วนร่วม)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

Introduction

Generally, nested sampling is used for calculating any integrals, e.g. an evidence in model selection problems. This program will concentrate only on the problem of selecting the number of components in a Mixture of [Spherical] Gaussians (MOGs) given observed data. In this problem, the likelihood is a product of MOGs, and we assume that the prior is uniform (or truncated-log-uniform for the deviation parameter) over the parameter space.

NOTE for Oli

To test the correctness of our implementations, I also provide a simple MOGs likelihood for us [see (1.2) below]: a mixture of three spherical gaussian with std. dev. = 1, so that the integral result will be 3*(2*pi)^(D/2) where D is the number of dimensions in the parameter space.

Program parameters

Main parameters

Normally, Nested sampling is controlled by 4 main parameters: (1) Nclus (no default value): this defines the number of dimensions of the parameter space D. (1.1) In our problem of learning (spherical) MOGs, D = (2+d)*Nclus where d is the dimension of the data space; To visualize the result, I usually use d = 2;

(1.2) ** just for developers** if the likelihood is a simple MOG, I define D = Nclus. (see (6.2))

(2) Next (default= 150*DlogD): the degree of extreme value distribution (Skilling, 2006; eq.(17)). This is the number of initial points for each nested sampling iteration which we can use to solve the problem of 'sampling from a truncated prior' (My MCMCMC paper). This number also controls stability of nested sampling (greater --> more stable).

(3) Nwalk(default= DlogD): the so-called 'burn-in' parameter in MCMC literatures. This parameter is used to solve the problem of 'sampling from a truncated prior'.

(4) Niter(default= 2*Next*Nwalk): The (estimated) maximum number of nested sampling iterations.

I will write some theoretical/heuristic explanations about all default values later...