204512/บรรยาย 10

จาก Theory Wiki
รุ่นแก้ไขเมื่อ 08:45, 2 กันยายน 2550 โดย Nut t02 (คุย | มีส่วนร่วม)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

บันทึกโดย : นายณัฐพล หล่อศิริ 50653781 , ...


Linear Programming

Note Problem ต่างจาก Instant ของ Problem กล่าวคือ Problem จะเท่ากับ เซตของ Instant ของ Problem
Note ตัวแปรทั้งหมดเป็นตัวแปรแบบเวกเตอร์ เพราะฉะนั้นจะขอละ ไม่ใส่เครื่องหมายเวกเตอร์


Optimization Problem

Instant ของปัญหา Optimization Problem จะประกอบด้วย

  • set F (เซตของคำตอบที่เป็นไปได้)
  • function cost F→R (จำนวนจริง)

ต้องการหา f∈F และ cost (f) ≤ cost (y) , สำหรับทุกๆ y∈F


Linear Programming Problem

Instant ของ linear programming คือ จำนวนเต็มบวก n, m, c ∈ R^n, b ∈ R^m และเมตริกซ์ A ของจำนวนจริงขนาด m x n จะได้ว่า

F = { x ← R^n :Ax = b , x ≥0 }
Cost : x → c^Tx


ตัวอย่าง

กำหนดให้ n = 3, m = 1 เขียนเป็นเมตริกซ์ ได้เป็น

Image010.png
หา x ที่ Ax = b ; x ≥ 0 แทนค่าจะได้
Image011.png
หา x ที่ทำให้ c1x1 + c2x2 + c3x3 น้อยที่สุด


ตัวอย่าง
  • การเขียนในรูปแบบ สมการ
- การระบุเซต F (เป็น constraint ของปัญหา)
x1 + x2 = 5
x3 + x4 – x2 = 1
x1 - x2 + x3 = 8
x5 – x3 = 7
xi ≥ 0 ทุกๆ 1 ≤ i ≤5
- การระบุ c (เป็น objective ของปัญหา)
minimize: x1 + x2 – x3 + 2x4 – 2x5
  • การเขียนในรูปแบบ เมตริกซ์
Image013.png , Image014.png , Image0142.png

Form ของ Linear Programming

Standard form

เมตริกซ์
minimize: cx
subject to: Ax = b ; x ≥ 0
สมการ
minimize: Image015.png
subject to: Image016.png เมื่อ j = 1,…,n


Canonical form

เมตริกซ์
minimize: cx
subject to: Ax ≥ b ; x ≥ 0
สมการ
minimize: Image015.png
subject to: Image017.png เมื่อ j = 1,…,n


ตัวอย่าง
เตรียมสอบมีเวลาอ่านหนังสือ 12 ชม. มี 3 วิชา Architect, Algo, Soft Com. อ่านอย่างน้อยวิชาละ 1 ชม., อ่าน architect & algo รวมกันไม่น้อยกว่า 5 ชม., อ่าน Soft Com. ไม่เกิน 8 ชม.

ถ้าให้

x1 = เวลาอ่าน Architect
x2 = เวลาอ่าน Algo
x3 = เวลาอ่าน Soft Com.

ให้ความเหนื่อยในการอ่านเป็น x1 + 5x2 + 2x3
เป้าหมายคือ ต้องการอ่านหนังสือให้ได้ตามเงื่อนไข + ความเหนื่อยน้อยสุด
วิธีทำ

minimize: x1 + 5x2 + 2x3
subject to:
x1 + x2 + x3 ≤ 12
x1 ≥ 1
x2 ≥ 1
x3 ≥ 1
x1 + x2 ≥ 5
x1 , x2 , x3 ≥ 0

แปลงให้อยู่ในรูป canonical form การทำให้สมการที่เป็น ≤ ให้เป็น ≥ ให้หมดจะได้ว่า

minimize: x1 + 5x2 + 2x3
subject to:
-x1 - x2 - x3 ≥ -12
x1 ≥ 1
x2 ≥ 1
x3 ≥ 1
x1 + x2 ≥ 5
x1 , x2 , x3 ≥ 0

เขียนเป็น matrix ได้

Image018.png