Proof Hypercube 1

จาก Theory Wiki
รุ่นแก้ไขเมื่อ 08:39, 28 ตุลาคม 2550 โดย Jittat (คุย | มีส่วนร่วม) (Reverted edit of 82.111.20.202, changed back to last version by Parinya)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

Theorem 1

Theorem: Let .

Proof: Let where 1 appears at ith position.

There will be some technicalities in the proof. One way to get rid of them is to consider .

Consider a hyperplane halving the middle point between v and The hyperplane is defined by . Working out the calculation,

So, P_v is defined by the intersection of halfspaces for . It is obvious that the volume of this intersection is (If you don't believe, you can do Reimann integration of this set :P ).

Since the volume can't be any smaller, we conclude that, in this case, . A more rigorous proof can also be achieved by considering other halfspaces and argue that it contains at least one of .

Theorem 2