01204211/homework9 graph theory 2

จาก Theory Wiki
รุ่นแก้ไขเมื่อ 19:44, 17 ธันวาคม 2558 โดย Jittat (คุย | มีส่วนร่วม)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา
This is part of 01204211-58

Due: 18 Dec 2015

H.1 (LPV-7.3.9) Prove that at least one of and is connected. (Note that is a complement graph of .)


H.2 TBA There is no problem H.2. Please skip this problem.


H.3 (LPV-8.3.2) How many labeled trees on n nodes are stars? How many are paths?


H.4 (LPV-8.5.4) Prove that if a tree has a node of degree d, then it has at least d leaves.


H.5 (LPV-10.3.1) In class, we proved the Hall's marriage theorem. In this problem, you will show that if a bipartite graph satisfies the condition that every node has the same degree , the has a perfect matching.

(Hint: first prove that (1) , and (2) for any subset of size , the number of nodes in that are connected to some node in is at least , then apply the Hall's theorem.)


H.6 (LPV-10.4.9) Let G be a bipartite graph with m nodes on both sides. Prove that if each node has degree larger than m/2, then it has a perfect matching.

(Hint: prove that G is good. Is is possible to find a subset of nodes on the left side that violates condition (2) for the Hall's marriage theorem?)