418531 ภาคต้น 2552/โจทย์ปัญหาการพิสูจน์ II/เฉลยข้อ 1

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา

ข้อย่อย 1

สูตรคือ


base case: ให้

เป็นจริง

inductive step: inductive hypothesis คือสมมติให้ p(n) คือ เป็นจริง ต้องการพิสูจน์ว่า p(n+1) คือ เป็นจริงด้วย

จากที่สมมติไว้คือ
บวกทั้งสองข้างของสมการด้วย
จะได้
ดังนั้นจึงสรุปได้ว่า

ข้อย่อย 2

สูตรคือ

base case: ให้

เป็นจริง

inductive step: inductive hypothesis คือสมมติให้ p(n)คือ เป็นจริง ต้องการพิสูจน์ว่า เป็นจริงด้วย

จากที่สมมติไว้คือ
บวก ทั้งสองข้างของสมการ
จะได้
ดังนั้นเราจึงสรุปได้ว่า เป็นจริง

ข้อย่อย 3

(Base Case) เนื่องจาก เราได้ว่า

(Induction Case) สมมติให้ n เป็นจำนวนเต็มที่มีค่ามากกว่าหรือเท่ากับ 0 และสมมติให้สมการในโจทย์เป็นจริง เราได้ว่า

ฉะนั้นเราจึงสามารถสรุปได้ว่าสมการในโจทย์เป็นจริงสำหรับจำนวนเต็ม n ที่ไม่เป็นลบทุกจำนวน

ข้อย่อย 4

base case: คือ n=5 แทนค่าจะได้

เป็นจริง

inductive step: inductive hypothesis คือ สมมติให้ p(n) คือ เป็นจริง ต้องการแสดงว่า เป็นจริงด้วย

จากที่สมมติ
คูณ 2 ทั้งสองข้างของสมการจะได้
เนื่องจาก n>4
ดังนั้นเราจึงสรุปได้ว่า เป็นจริง เมื่อ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 4

ข้อย่อย 5

(Base Case) n มีค่าเท่ากับ 2 และเราได้ว่า

(Induction Case) สมมติให้ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 2 และให้สมการในโจทย์เป็นจริง เราได้ว่า

ดังนั้นเราสามารถสรุปได้ว่าสมการในโจทย์เป็นจริงสำหรับจำนวนจริง ทุกจำนวน

ข้อย่อย 6

(Base Case) n มีค่าเท่ากับ 0 และเราได้ว่า ซึ่งหารด้วย 6 ได้ลงตัว

(Induction Case) สมมติว่า n เป็นจำนวนเต็มที่ไม่เป็นลบ และสมมติให้ หารด้วย 6 ลงตัว

พิจารณาค่า

เราได้ว่า 6 หาร ลงตัวเนื่องจาก 3 หาร ลงตัว นอกจากนี้ 2 ยังหาร ลงตัวเนื่องจากในค่า และ ลงตัว จะต้องมีสักตัวที่เป็นจำนวนคู่

เนื่องจาก 6 หารทั้ง และ ลงตัว เราจึงได้ว่า 6 หาร ลงตัวด้วย

ดังนั้นเราจึงสรุปได้ว่า 6 หาร ลงตัวสำหรับจำนวนเต็ม n ที่ไม่เป็นลบทุกจำนวน

ข้อย่อย 7

ก่อนเราจะทำการพิสูจน์ข้อความในโจทย์ เราจะทำการพิสูจน์ lemma ต่อไปนี้

lemma: ให้ , , และ เป็นเซตใดๆ ที่ และ แล้ว

พิสูจน์ (lemma): ให้ x เป็นค่าใดๆ สมมติให้ เราได้ว่า และ

เนื่องจาก และ เราได้ว่า และ ด้วย ดังนั้น

เนื่องจาก x เป็นค่าใดๆ เราจึงสามารถสรุปได้ว่า ฉะนั้น

พิสูจน์ (โจทย์)

(Base Case) n มีค่าเท่ากับ 1 ในกรณีนี้เราได้ว่า

(Induction Case) ให้ n เป็นจำนวนเต็มบวก และสมมติให้ข้อความที่โจทย์ต้องการพิสูจน์เป็นจริง

เราได้ว่า และ

โจทย์กำหนดว่า และจาำกสมมติฐานเราได้ว่า ฉะนั้นด้วย lemma เราได้ว่า

ฉะนั้นเราจึงสรุปได้ว่าข้อความในโจทย์เป็นจริงสำหรับจำนวนเต็มบวก n ทุกค่า

ข้อย่อย 8

(Base Case) n มีค่าเท่ากับ 1 และเราจะได้ว่า

(Induction Case) ให้ n เป็นจำนวนเต็มที่มีค่ามากกว่า 0 และสมมติให้สมการในโจทย์เป็นจริง ได้ว่า

ดังนั้นเราสรุปได้ว่าสมการเป็นจริงสำหรับจำนวนเต็มบวก n ทุกจำนวน

ข้อ 9

(Base Case) n มีค่าเท่ากับ 1 และเราได้ว่า ซึ่งหารด้วย 21 ลงตัว

(Induction Case) ให้ n เป็นจำนวนเต็มบวก และสมมติให้ หารด้วย 21 ลงตัว

เราได้ว่า

จากสมมติฐาน เราได้ว่า 21 หาร ลงตัว ดังนั้นมันจึงหาร ลงตัว และเนื่องจาก 21 หาร ลงตัว เราจึงได้ว่า 21 หาร

ฉะนั้นเราจึงสามารถสรุปได้ว่า 21 หาร ลงตัวสำหรับจำนวนเต็มบวก n ทุกจำนวน

ข้อ 10

lemma: สำหรับจำนวนเต็มบวก n ใดๆ

พิสูจน์ (lemma): เราได้ว่า


พิสูจน์ (โจทย์)

(Base Case) n มีค่าเท่ากับ 1 เราได้ว่า

(Induction Case) ให้ n เป็นจำนวนเต็มบวก และสมมติให้อสมการในโจทย์เป็นจริง เราได้ว่า

ดังนั้นเราสามารถสรุปได้ว่าอสมการในโจทย์เป็นจริงสำหรับจำนวนเต็มบวก n ทุกตัว