ผลต่างระหว่างรุ่นของ "418531 ภาคต้น 2552/โจทย์ปัญหาการวิเคราะห์เชิงการจัด/เฉลยข้อ 10"
Aoy (คุย | มีส่วนร่วม) |
Aoy (คุย | มีส่วนร่วม) |
||
| แถว 1: | แถว 1: | ||
ให้ B เป็นเซตของคำตอบทั้งหมดของสมการ | ให้ B เป็นเซตของคำตอบทั้งหมดของสมการ | ||
| − | จะได้ว่า <math> |B|= {17+4-1 \choose 17} \,</math> | + | จะได้ว่า <math> |B|= {17+4-1 \choose 17}=1140 \,</math> |
ให้ A เป็นเซตของคำตอบของสมการโดยที่ <math> x_1 \leq 3, x_2 \leq 4, x_3 \leq 5, x_4 \leq 8 </math> | ให้ A เป็นเซตของคำตอบของสมการโดยที่ <math> x_1 \leq 3, x_2 \leq 4, x_3 \leq 5, x_4 \leq 8 </math> | ||
| แถว 41: | แถว 41: | ||
นั่นคือ <math> x_1^'+x_2+x_3+x_4=13 </math> โดยที่ <math> x_1^' \geq 0 </math> ด้วย | นั่นคือ <math> x_1^'+x_2+x_3+x_4=13 </math> โดยที่ <math> x_1^' \geq 0 </math> ด้วย | ||
| − | ดังนั้น <math> |A_1|={13+4-1 \choose 13} | + | ดังนั้น <math> |A_1|={13+4-1 \choose 13} \,</math> |
| แถว 158: | แถว 158: | ||
ดังนั้นจะได้ว่า <math>|B-A|={16 \choose 13}+ {15 \choose 12}+ {14 \choose 11}+{11 \choose 8}-{11 \choose 8}-{10 \choose 7}-{7 \choose 4}-{9 \choose 6}-{6 \choose 3}-{5 \choose 2}+{5 \choose 2}</math> | ดังนั้นจะได้ว่า <math>|B-A|={16 \choose 13}+ {15 \choose 12}+ {14 \choose 11}+{11 \choose 8}-{11 \choose 8}-{10 \choose 7}-{7 \choose 4}-{9 \choose 6}-{6 \choose 3}-{5 \choose 2}+{5 \choose 2}</math> | ||
| − | <math>|B-A|=++----= </math> | + | <math>|B-A|=560+445+364-120-35-84-20= 1110</math> |
| − | ดังนั้น <math> |A| = -= </math> แบบ | + | ดังนั้น <math> |A| =1140-1110= 30</math> แบบ |
รุ่นแก้ไขปัจจุบันเมื่อ 10:17, 3 สิงหาคม 2552
ให้ B เป็นเซตของคำตอบทั้งหมดของสมการ
จะได้ว่า
ให้ A เป็นเซตของคำตอบของสมการโดยที่
จะได้ว่า B-A คือเซตของคำตอบทั้งหมดของสมการที่ หรือ หรือ หรือ
ให้ เป็นเซตคำตอบของสมการที่
เป็นเซตคำตอบของสมการที่
เป็นเซตคำตอบของสมการที่
เป็นเซตคำตอบของสมการที่
หา โดยที่ ให้เป็นสมการที่ 1
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 1 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 2
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 2 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 3
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 3 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 4
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 4 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 5
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 5 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 6
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 6 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 7
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 7 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 8
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 8 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 9
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 9 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
หา โดยที่ ให้เป็นสมการที่ 10
จาก นั่นก็คือ นั่นเอง
ให้ แทนค่าในสมการที่ 10 ได้
นั่นคือ โดยที่ ด้วย
ดังนั้น
และในทำนองเดียวกันสามารถหา ได้ด้วยวิธีเดียวกัน
ซึ่งจะได้
ซึ่งจะได้
ซึ่งจะได้
ซึ่งจะได้
ซึ่งจะได้
ดังนั้นจะได้ว่า
ดังนั้น แบบ