418531 ภาคต้น 2552/โจทย์ปัญหาความน่าจะเป็น I

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา

ข้อ 1

[Mitzenmacher & Upfal 1.1] โยนเหรียญไม่ถ่วงน้ำหนัก 10 ครั้ง จงหาความน่าจะเป็นที่

  1. จำนวนหัวเท่ากับจำนวนก้อย
  2. จำนวนหัวมากกว่าจำนวนก้อย
  3. ในการโยนเหรียญครั้งที่ i และการโยนเหรียญครั้งที่ 11-i มีหน้าที่ออกเหมือนกัน สำหรับ i = 1, 2, 3, 4, 5
  4. เหรียญออกหัวติดต่อกันอย่างน้อย 4 ครั้ง

เฉลย

ข้อ 2

[Mitzenmacher & Upfal 1.3] เราสับไพ่สำรับหนึ่ง แล้วได้การเรียงสับเปลี่ยนไ่พ่มาหนึ่งแบบ โดยที่การเรียงสับเปลี่ยนไพ่ทั้ง 52! แบบทุกๆ แบบมีโอกาสเกิดขึ้นเท่าๆ กัน จงหาความน่าจะเป็นที่

  1. ไพ่สองใบแรกมี A อยู่อย่างน้อย 1 ใบ
  2. ไพ่ห้าใบแรกมี A อยู่อย่างน้อย 1 ใบ
  3. ไพ่สองใบแรกมีแต้มเท่ากัน
  4. ไพ่ห้าใบแรกเป็นข้าวหลามตัดทั้งหมด
  5. ไพ่ห้าใบแรกมีแต้มเป็นเห่า (full house) คือมีไพ่สามใบแต้มเท่ากัน (ตอง) และอีกสองใบที่เหลือมีแต้มเท่ากันอีก (คู่)

เฉลย

ข้อ 3

[Mitzenmacher & Upfal 1.9] โยนเหรียญไม่ถ่วงน้ำหนัก n ครั้ง และให้ k เป็นจำนวนเต็มที่มากกว่า 0 จงหาขอบเขตบนของความน่าจะเป็นที่จะมีหัวติดกัน ครั้ง

เฉลย

ข้อ 4

[Mitzenmacher & Upfal 1.10] มีเหรียญไม่ถ่วงน้ำหนัก 1 เหรียญ และเหรียญที่หน้าเป็นหัวทั้งสองหน้าอยู่หนึ่งเหรียญ สมมติว่าคุณเลือกเหรียญมาเหรียญหนึ่งจากสองเหรียญนี้ด้วยความน่าจะเป็นเท่าๆ กันแล้วโยน ปรากฎว่าเหรียญขึ้นหัว จงหาความน่าจะเป็นที่คุณเลือกเหรียญที่หน้าทั้งสองหน้าเป็นหัว

เฉลย

ข้อ 5

[Mitzenmacher & Upfal 1.12] สมมติว่าประชากร 2% ของทั้งหมดเป็นโรคทางกรรมพันธุ์ X และสมมติว่าเราเลือกสุ่มคนหนึ่งคนมาโดยคนทั้งหมดมีโอกาสถูกสุ่มเลือกเท่าๆ กัน แล้วนำคนคนนี้มาตรวจว่าเป็นโรค X หรือไม่ เราทราบว่าถ้าผู้ถูกตรวจเป็นโรค การตรวจจะให้ผลเป็นบวก (เป็นโรค) ด้วยความน่าจะเป็น 0.999 แต่ถ้าผู้ถูกตรวจไม่เป็นโรค การตรวจจะให้ผลเป็นบวกด้วยความน่าจะเป็น 0.005 ถ้าหากผลการตรวจออกมาเป็นบวก จงหาความน่าจะเป็นที่ผู้ถูกสุ่มตรวจนี้จะเป็นโรค X

เฉลย

ข้อ 6

[Mitzenmacher & Upfal 1.15] โยนลูกเต๋าธรรมดา (มี 6 หน้า) จำนวน 10 ครั้ง โดยที่การโยนแต่ละครั้งเป็นอิสระจากกัน จงหาความน่าจะเป็นที่ผลรวมของแต้มทั้งหมดหารลงตัวด้วย 6 (ใบ้: พิจารณากรณีที่เราโยนลูกเต๋าไปแล้ว 9 ครั้งแต่ยังไม่ได้โยนครั้งที่ 10)

เฉลย

ข้อ 7

[Mitzenmacher & Upfal 1.22]

  1. พิจารณาเซต เราจะทำการสร้างซับเซต X ของเซตข้างต้นด้วยกระบวนการดังต่อไปนี้: ทำการโยนเหรียญไม่ถ่วงน้ำหนัก n ครั้ง ถ้าในการโยนเหรียญครั้งที่ i ปรากฎว่าเหรียญออกหัว เราจะกำหนดให้เลข i เป็นสมาชิกของ X มิเช่นนั้นเรากำหนดให้ i ไม่เป็นสมาชิกของ X จงแสดงว่าสำหรับซับเซต X ของเซต ใดๆ ความน่าจะเป็นซับเซตทุกซับเซตจะเป็นผลลัพธ์ของกระบวนการนี้มีค่าเท่าๆ กัน
  2. สมมติว่าซับเซต X และ Y ของ ถูกเลือกมาโดยเป็นอิสระจากกันและโดยที่เซตทุกเซตมีความน่าจะเป็นที่จะถูกเลือกเท่าๆ กัน จงหาค่า และ

เฉลย

ข้อ 8

[Rosen 4.5.8] จงแสดงว่าสำหรับเหตุการณ์ ใดๆ

เฉลย